

2256 CLAREMONT COURT INDUSTRIAL PROJECT AIR QUALITY EMISSIONS ASSESSMENT

Hayward, California

April 4, 2025

Revised April 8, 2025

Prepared for:

Carolyn Mogollon, AICP
Project Manager
David J. Powers & Associates, Inc.
1871 The Alameda, Suite 200
San José, CA 95126

Prepared by:

Jordyn Bauer
James A. Reyff

ILLINGWORTH & RODKIN, INC.
Acoustics • Air Quality
429 East Cotati Avenue
Cotati, CA 94931
(707) 794-0400

I&R Project#: 24-116

Introduction

The purpose of this report is to address the potential air quality impacts associated with the proposed industrial facility located at 2256 Claremont Court in Hayward, California. Air quality impacts from this project would be associated with demolition of the existing land uses, construction of the new building and infrastructure, and operation of the project. Air pollutants were predicted using appropriate computer models. The analysis was conducted following guidance provided by the Bay Area Air District.¹

Project Description

The 5.6-acre project site consists of an existing industrial facility and associated surface parking. The project proposes to demolish the existing use and construct a 45,402 square foot (sf) industrial building containing approximately 40,283-sf of transfer facility uses and 5,119-sf of office space. The new building would operate as a truck terminal where goods are transferred from one truck to another, with no long-term storage of products on-site. The existing paved parking lots in the northern, western and eastern portions of the site would remain with implementation of the site and new paved parking areas would be installed along the southern, southeastern, and northwestern portions of the site as well as on the perimeter of the proposed building. The project would include a 750-kilowatt (kW) emergency generator powered by 1,005-horsepower (HP) diesel engine. Equipment used to move goods in the warehouse and load/unload trucks would be electric-powered. In addition, refrigerated goods are not anticipated; therefore, trucks equipped with diesel-powered transport refrigeration units (TRUs) would not be used by the Project. Construction is expected to begin in October 2026 and will be completed in December 2027.

Setting

The project is located in western Alameda County, which is in the San Francisco Bay Area Air Basin. Ambient air quality standards have been established at both the State and federal level. The Bay Area meets all ambient air quality standards with the exception of ground-level ozone, respirable particulate matter (PM₁₀), and fine particulate matter (PM_{2.5}).

Air Pollutants of Concern

High ozone concentrations in the air basin are caused by the cumulative emissions of reactive organic gases (ROG) and nitrogen oxides (NO_x). These precursor pollutants react under certain meteorological conditions to form ozone concentrations. Controlling the emissions of these precursor pollutants is the focus of the Bay Area's attempts to reduce ambient ozone concentrations. The highest ozone concentrations in the Bay Area occur in the eastern and southern inland valleys that are downwind of air pollutant sources. High ozone concentrations aggravate respiratory and cardiovascular diseases, reduced lung function, and increase coughing and chest discomfort.

¹ Formerly known as the Bay Area Air Quality Management District (BAAQMD), *CEQA Air Quality Guidelines*. April 2023.

Particulate matter is another problematic air pollutant in the air basin. Particulate matter is assessed and measured in terms of respirable particulate matter or particles that have a diameter of 10 micrometers or less (PM₁₀) and fine particulate matter where particles have a diameter of 2.5 micrometers or less (PM_{2.5}). Elevated concentrations of PM₁₀ and PM_{2.5} are the result of both region-wide (or cumulative) emissions and localized emissions. High particulate matter concentrations aggravate respiratory and cardiovascular diseases, reduce lung function, increase mortality (e.g., lung cancer), and result in reduced lung function growth in children.

Toxic Air Contaminants

TACs are a broad class of compounds known to cause morbidity or mortality, often because they cause cancer. TACs are found in ambient air, especially in urban areas, and are caused by industry, agriculture, fuel combustion, and commercial operations (e.g., dry cleaners). TACs are typically found in low concentrations, even near their source (e.g., diesel particulate matter [DPM] near a freeway). Because chronic exposure of TACs can result in adverse health effects, they are regulated at the regional, State, and federal level.

Diesel exhaust is the predominant TAC in urban air and is estimated to represent about three-quarters of the cancer risk from TACs (based on the Bay Area average). According to the California Air Resources Board (CARB), diesel exhaust is a complex mixture of gases, vapors, and fine particles. This complexity makes the evaluation of health effects from diesel exhaust exposure a complex scientific issue. Some of the chemicals in diesel exhaust, such as benzene and formaldehyde, have been previously identified as TACs by the CARB, and are listed as carcinogens either under the State's Proposition 65 or under the Federal Hazardous Air Pollutants programs. Health risks from TACs are estimated using the Office of Environmental Health Hazard Assessment (OEHHA) risk assessment guidelines, which were published in February of 2015 and incorporated in the Bay Area Air District's current California Environmental Quality Act (CEQA) guidance.²

PM_{2.5} emissions can include TACs. Due to the adverse health effects caused by PM_{2.5} exposure even at low concentrations, the Air District developed assessing methods and health risk thresholds to address exposure to increased concentrations caused by project PM_{2.5} emissions.³

Sensitive Receptors

There are groups of people more affected by air pollution than others. CARB has identified the following persons who are most likely to be affected by air pollution: children under 16, people over 65, athletes, and people with cardiovascular and chronic respiratory diseases. These groups are classified as sensitive receptors. Locations that may contain a high concentration of these sensitive population groups include residential areas, hospitals, daycare facilities, elder care facilities, and elementary schools. For cancer risk assessments, children are the most sensitive receptors, since they are more susceptible to cancer causing TACs. Residential locations are

² OEHHA, 2015. *Air Toxics Hot Spots Program Risk Assessment Guidelines, The Air Toxics Hot Spots Program Guidance Manual for Preparation of Health Risk Assessments*. Office of Environmental Health Hazard Assessment. February.

³ Bay Area Air District, 2022 CEQA Air Quality Guidelines, Appendix A, p40.

assumed to include infants and small children. The closest sensitive receptors to the project site are the single-family residences located over 1,000 feet away to the north, northeast, and southwest. This project would not introduce new sensitive receptors (i.e., residents) to the area.

Federal Regulations

The United States Environmental Protection Agency (EPA) sets nationwide ambient air quality standards (NAAQS) and emission standards for mobile sources, which include on-road (highway) motor vehicles such trucks, buses, and automobiles, and non-road (off-road) vehicles and equipment used in construction, agricultural, industrial, and mining activities (such as bulldozers and loaders). The EPA also sets nationwide fuel standards.

In the past twenty years, the EPA has established a number of emission standards for on- and non-road heavy-duty diesel engines used in trucks and other equipment. This was done in part because diesel engines are a significant source of NO_x and particulate matter (PM_{2.5}) and because the EPA has identified DPM as a probable carcinogen. Implementation of the heavy-duty diesel on-road vehicle standards and the non-road diesel engine standards are estimated to reduce particulate matter and NO_x emissions from diesel engines up to 95 percent in 2030 when the heavy-duty vehicle fleet is completely replaced with newer heavy-duty vehicles that comply with these emission standards.⁴

In concert with the diesel engine emission standards, the EPA has also substantially reduced the amount of sulfur allowed in diesel fuels. The sulfur contained in diesel fuel is a significant contributor to the formation of particulate matter in diesel-fueled engine exhaust. The current standards limit the amount of sulfur allowed in diesel fuel to 15 parts per million by weight (ppmw). Ultra-low sulfur diesel (ULSD), as it is referred to, is required for use by all vehicles in the U.S.

All of the above federal diesel engine and diesel fuel requirements have been adopted by California, in some cases with modifications making the requirements more stringent or the implementation dates sooner.

State Regulations

The California Air Resources Board (CARB) has set statewide ambient air quality standards (CAAQS) and emission standards for on-road and off-road mobile sources that are more stringent than those adopted by the EPA. Several of these regulatory programs affect medium and heavy-duty diesel trucks that represent the bulk of DPM emissions from California highways. These regulations include the solid waste collection vehicle (SWCV) rule, in-use public and utility fleets, and the heavy-duty diesel truck and bus regulations. In 2008, CARB approved a regulation to reduce emissions of DPM and NO_x from on-road heavy-duty diesel fueled vehicles.⁵ The regulation requires affected vehicles to meet specific performance requirements between 2014 and 2023, with all affected diesel vehicles required to have 2010 model-year engines or equivalent by

⁴ USEPA, 2000. *Regulatory Announcement, Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements*. EPA420-F-00-057. December.

⁵ Available online: <http://www.arb.ca.gov/msprog/onrdiesel/onrdiesel.htm>. Accessed: November 21, 2014.

2023. Advanced Clean Cars and Advanced Clean Cars II (ACC II) that will require all new cars and light trucks sold in California will be zero-emission vehicles by 2035.

CARB has also adopted and implemented regulations to reduce DPM and NO_x emissions from in-use (existing) and new off-road heavy-duty diesel vehicles (e.g., loaders, tractors, bulldozers, backhoes, off-highway trucks, etc.). The regulations apply to diesel-powered off-road vehicles with engines 25 horsepower (hp) or greater. The regulations are intended to reduce DPM and NO_x exhaust emissions by requiring owners to turn over their fleet (replace older equipment with newer equipment) or retrofit existing equipment in order to achieve specified fleet-averaged emission rates. Implementation of this regulation, in conjunction with the Federal off-road equipment engine emission limits for new vehicles, has significantly reduced emissions of DPM and NO_x.

To address the issue of diesel emissions in the state, CARB developed the *Risk Reduction Plan to Reduce Particulate Matter Emissions from Diesel-Fueled Engines and Vehicles*⁶. In addition to requiring more stringent emission standards for new on-road and off-road mobile sources and stationary diesel-fueled engines to reduce particulate matter emissions by 90 percent, a significant component of the plan involves application of emission control strategies to existing diesel vehicles and equipment. Many of the measures of the Diesel Risk Reduction Plan have been approved and adopted, including the Federal on-road and non-road emission standards for new diesel engines, as well as adoption of regulations for ULSD fuel in California.

Truck and Bus Regulation

CARB is actively enforcing heavy-duty diesel vehicle regulations that require fleets to replace or retrofit heavy-duty diesel vehicles, with full implementation of the program scheduled for January 1, 2023. Compliance with the program is generally considered vehicles equipped with a 2010 or newer engine model year. As of January 1, 2020, the DMV cannot register any vehicle that does not meet the requirements of the Truck and Bus Regulation.

Other CARB diesel programs affecting heavy-duty diesel vehicles include:

- Idling limits of no more than 5 minutes with special exceptions
- Emission Control Labels must be affixed to engines of all commercial heavy-duty diesel vehicles, and must be legible as proof the engine, at minimum, meets U.S. federal emissions standards for the engine model year
- The Periodic Smoke Inspection Program requires owners of California-based fleets of two or more diesel vehicles to perform annual smoke opacity tests and to keep records for at least two years for each vehicle.
- The Heavy-Duty Vehicle Inspection Program uses random roadside inspections to verify that diesel engines do not smoke excessively and are tamper-free.

⁶ California Air Resources Board, 2000. *Risk Reduction Plan to Reduce Particulate Matter Emissions from Diesel-Fueled Engines and Vehicles*. October.

Off-Road Vehicle and Equipment Regulations

CARB has also adopted and implemented regulations to reduce DPM and nitrogen oxides (NOx) emissions from in-use (existing) and new off-road heavy-duty diesel vehicles (e.g., loaders, tractors, bulldozers, backhoes, off-highway trucks, etc.). The regulations apply to diesel-powered off-road vehicles with engines 25 horsepower (hp) or greater. The regulations are intended to reduce particulate matter and NOx exhaust emissions by requiring owners to turn over their fleet (replace older equipment with newer equipment) or retrofit existing equipment in order to achieve specified fleet-averaged emission rates. Implementation of this regulation, in conjunction with stringent Federal off-road equipment engine emission limits for new vehicles, is expected to substantially reduce emissions of DPM and NOx.

Fleet owners must report the vehicle and engine information for all vehicles within their fleets operating in California. Fleet owners must also report owner information. Fleet owners should report using DOORS, which is CARB's online reporting tool. CARB issues a unique Equipment Identification Number (EIN) that is assigned to each vehicle. The fleet owner must label their vehicles with the EIN.

Other CARB diesel programs affecting off-road vehicles and equipment include:

- Idling limits of no more than 5 minutes with special exceptions.
- Portable engines 50 hp or greater may require a permit or registration to legally operate. The Bay Area Air District is responsible for taking enforcement action against individuals who own or operate portable equipment without a registration or permit.

Assembly Bill 98 (AB 98)

Assembly Bill 98 (AB 98), signed into law by Governor Gavin Newsom on September 29, 2024, establishes statewide standards for the development and expansion of logistics facilities in California, aiming to mitigate their environmental and health impacts on nearby communities. Effective January 1, 2026, the law mandates that new or expanded logistics facilities adhere to specific design and operational requirements, particularly when located within 900 feet of sensitive receptors. Key provisions include maintaining a minimum distance of 300 to 500 feet between loading docks and neighboring property lines depending on facility size and implementing energy-efficient measures like solar panels and electric vehicle charging stations. More stringent standards apply to warehouses over 250,000 sf and those located within 900 feet of a sensitive receptor. Additionally, the law requires the establishment of designated truck routes to direct heavy-duty truck traffic away from residential areas, the replacement of any demolished housing units with two affordable units within the same jurisdiction, and the use of zero-emission technology by 2030.

California Department of Justice Guidelines

The California Department of Justice recommends best management practices for warehouse projects that include heavy-duty truck and off-road diesel fleets. These best management practices

are intended to reduce the air quality and greenhouse gas impacts from warehouse projects⁷. The guidelines contain siting and design considerations and air quality and GHG analyses and mitigation recommendations. Possible mitigation measure recommendations are described for construction emissions and operational emissions so that local, statewide, and global impacts from warehouse projects are reduced to the lowest levels possible. Best practices and mitigation measures that address other issues such as noise and traffic are also provided.

Bay Area Air District

The Bay Area Air District has jurisdiction over an approximately 5,600-square mile area, commonly referred to as the San Francisco Bay Area (Bay Area). The District's boundary encompasses the nine San Francisco Bay Area counties, including Alameda County, Contra Costa County, Marin County, San Francisco County, San Mateo County, Santa Clara County, Napa County, southwestern Solano County, and southern Sonoma County.

The Air District is the lead agency in developing plans to address attainment and maintenance of the National Ambient Air Quality Standards and California Ambient Air Quality Standards. The District also has permit authority over most types of stationary equipment utilized for the proposed project. The Air District is responsible for permitting and inspection of stationary sources; enforcement of regulations, including setting fees, levying fines, and enforcement actions; and ensuring that public nuisances are minimized.

The Bay Area Air District's Community Air Risk Evaluation (CARE) program was initiated in 2004 to evaluate and reduce health risks associated with exposures to outdoor TACs in the Bay Area.⁸ The program examines TAC emissions from point sources, area sources, and on-road and off-road mobile sources with an emphasis on diesel exhaust, which is a major contributor to airborne health risk in California. The CARE program is an on-going program that encourages community involvement and input. The technical analysis portion of the CARE program has been implemented in three phases that includes an assessment of the sources of TAC emissions, modeling and measurement programs to estimate concentrations of TAC, and an assessment of exposures and health risks. Throughout the program, information derived from the technical analyses has been used to develop emission reduction activities in areas with high TAC exposures and high density of sensitive populations. Risk reduction activities associated with the CARE program are focused on the most at-risk communities in the Bay Area. Seven areas have been identified by the Air District as impacted communities. They include Eastern San Francisco, Richmond/San Pablo, Western Alameda, San José, Vallejo, Concord, and Pittsburgh/Antioch. The project site is not located within any of the Bay Area Air District CARE areas.

Overburdened communities are areas located (i) within a census tract identified by the California Communities Environmental Health Screening Tool (CalEnviroScreen), Version 4.0 implemented by OEHHA, as having an overall score at or above the 70th percentile, or (ii) within 1,000 feet of

⁷ State of California Department of Justice. *Warehouse Projects: Best Practices and Mitigation Measures to Comply with the California Environmental Quality Act*. URL: <https://oag.ca.gov/system/files/media/warehouse-best-practices.pdf> Accessed January 31, 2025.

⁸ See Bay Area Air District: <https://www.baaqmd.gov/community-health/community-health-protection-program/community-air-risk-evaluation-care-program>.

any such census tract.⁹ The Air District has identified several overburdened areas within its boundaries. However, the project site is not within an overburdened area as the Project site is scored at the 56th percentile on CalEnviroScreen.¹⁰

Bay Area Air District CEQA Air Quality Guidelines

In June 2010, the Air District adopted thresholds of significance to assist in the review of projects under CEQA. In 2023, the Bay Area Air District revised the *CEQA Air Quality Guidelines* that include significance thresholds to assist in the evaluation of air quality impacts of projects and plans proposed within the Bay Area. The current Air District guidelines provide recommended procedures for evaluating potential air impacts during the environmental review process consistent with CEQA requirements including thresholds of significance, mitigation measures, and background air quality information. They include assessment methodologies for criteria air pollutants, air toxics, odors, and GHG emissions as shown in Table 1.¹¹ Air quality impacts and health risks are considered potentially significant if they exceed these thresholds.

The Bay Area Air District recommends all projects include a “basic” set of best management practices (BMPs) to manage fugitive dust and consider impacts from dust (i.e., fugitive PM₁₀ and PM_{2.5}) to be less than significant if BMPs are implemented (listed below). The Air District strongly encourages enhanced BMPs for construction sites near schools, residential areas, other sensitive land uses, or if air quality impacts were found to be significant.

Table 1. Bay Area Air District CEQA Significance Thresholds

Criteria Air Pollutant	Construction Thresholds		Operational Thresholds	
	Average Daily Emissions (lbs./day)		Average Daily Emissions (lbs./day)	Annual Average Emissions (tons/year)
ROG	54		54	10
NO _x	54		54	10
PM ₁₀	82 (Exhaust)		82	15
PM _{2.5}	54 (Exhaust)		54	10
CO	Not Applicable		9.0 ppm (8-hour average) or 20.0 ppm (1-hour average)	
Fugitive Dust	Construction Dust Ordinance or other Best Management Practices (BMPs)*			Not Applicable

Note: ROG = reactive organic gases, NO_x = nitrogen oxides, PM₁₀ = coarse particulate matter or particulates with an aerodynamic diameter of 10 micrometers (μm) or less, PM_{2.5} = fine particulate matter or particulates with an aerodynamic diameter of 2.5 μm or less.

* The Bay Area Air District strongly recommends implementing all feasible fugitive dust management practices especially when construction projects are located near sensitive communities, including schools, residential areas, or other sensitive land uses.

Source: Bay Area Air District, 2023

⁹ See Bay Area Air District: https://www.baaqmd.gov/~/media/dotgov/files/rules/reg-2-permits/2021-amendments/documents/20210722_01_appendixd_mapsofoverburdenedcommunities-pdf.pdf?la=en.

¹⁰ OEHAA, CalEnviroScreen 4.0 Maps <https://oehha.ca.gov/calenviroscreen/report/calenviroscreen-40>

¹¹ Bay Area Air District, 2022 *CEQA Air Quality Guidelines*, April 2023.

Bay Area Air District Rules and Regulations

Combustion equipment associated with the proposed project includes new diesel engines to power generator that would establish new sources of particulate matter and gaseous emissions. Emissions would primarily result from the testing of the emergency backup generator. Certain emission sources would be subject to Bay Area Air District Regulations and Rules. The District's rules and regulations that may apply to the project include:

- Regulation 2 – Permits
 - Rule 2-1: General Requirements
 - Rule 2-2: New Source Review
 - Rule 2-5: New Source Review of Toxic Air Contaminants
- Regulation 6 – Particulate Matter and Visible Emissions
 - Rule 6-3: Wood-Burning Devices
- Regulation 9 – Inorganic Gaseous Pollutants
 - Rule 9-1: Sulfur Dioxide
 - Rule 9-7: Nitrogen Oxides and Carbon Monoxide from Industrial, Institutional, and Commercial Boilers, Steam Generators, And Process Heaters
 - Rule 9-4: Nitrogen Oxides from Fan Type Residential Central Furnace
 - Rule 9-6: Nitrogen Oxides Emissions from Natural Gas-Fired Boilers and Water Heaters
 - Rule 9-8: Nitrogen Oxides and Carbon Monoxide from Stationary Internal Combustion Engines

Permits

Rule 2-1-301 requires that any person installing, modifying, or replacing any equipment, the use of which may reduce or control the emission of air contaminants, shall first obtain an Authority to Construct (ATC).

Rule 2-1-302 requires that written authorization from the Bay Area Air District in the form of a Permit to Operate (PTO) be secured before any such equipment is used or operated.

Rule 2-1 lists sources that are exempt from permitting.

New Source Review

Rule 2-2, New Source Review (NSR), applies to all new and modified sources or facilities that are subject to the requirements of Rule 2-1-301. The purpose of the rule is to provide for review of such sources and to provide mechanisms by which no net increase in emissions will result.

Rule 2-2-301 requires that an applicant for an ATC or PTO apply Best Available Control Technology (BACT) to any new or modified source that results in an increase in emissions and has emissions of precursor organic compounds, non-precursor organic compounds, NO_x, SO₂, PM₁₀, or CO of 10.0 pounds or more per highest day. Based on the estimated emissions from the

proposed project, BACT will be required for NOx emissions from the diesel-fueled generator engines.

Rule 2-5 applies to new and modified sources of TAC emissions. Bay Area Air District evaluates the TAC emissions in order to evaluate potential public exposure and health risk, to mitigate potentially significant health risks resulting from these exposures, and to provide net health risk benefits by improving the level of control when existing sources are modified or replaced. Toxics BACT (or TBACT) is applied to any new or modified source of TACs where the source risk is a cancer risk greater than 1.0 in one million and/or a chronic hazard index greater than 0.20. Permits are not issued for any new or modified source that has risks or net project risks that exceed a cancer risk of 10.0 in one million or a chronic or acute hazard index of 1.0.

Stationary Diesel Airborne Toxic Control Measure

The Bay Area Air District administers the CARB's Airborne Toxic Control Measure (ACTM) for Stationary Diesel engines (section 93115, title 17 CA Code of Regulations). The project's stationary sources will be new stationary emergency stationary emergency standby diesel engines larger than 50 hp. These limits vary based on maximum engine power. All engines are limited to PM emission rates of 0.15 g/hp-hour, regardless of size. This ACTM limits engine operation 50 hours per year for routine testing and maintenance.

Offsets

Rule 2-2-302 requires that offsets be provided for a new or modified source that emits more than 10 tons per year of NOx or precursor organic compounds. It is not expected that emissions of any pollutant will exceed the offset thresholds.

Prohibitory Rules

Regulation 6 pertains to particulate matter and visible emissions. Although the engines will be fueled with diesel, they will be modern, low emission engines. Thus, the engines are expected to comply with Regulation 6.

Rule 6-3 applies to emissions from wood-burning devices. Effective November 1, 2016, no person or builder shall install a wood-burning device in a new building construction.

Rule 9-1 applies to sulfur dioxide. The engines will use ultra-low sulfur diesel fuel (less than 15 ppm sulfur) and will not be a significant source of sulfur dioxide emissions and are expected to comply with the requirements of Rule 9-1.

Rule 9-7 limits the emissions of NOx CO from industrial, institutional and commercial boilers, steam generators and process heaters. This regulation typically applies to boilers with a heat rating of 2 million British Thermal Units (BTU) per hour.

Rule 9-8 prescribes NOx and CO emission limits for stationary internal combustion engines. Since the proposed engines will be used with emergency standby generator, Regulation 9-8-110 exempts

the engines from the requirements of this Rule, except for the recordkeeping requirements (9-8-530) and limitations on hours of operation for reliability-related operation (maintenance and testing). The engines will not operate more than 50 hours per year, which will satisfy the requirements of 9-8-111.

BACT for Diesel Generator Engines

Since the generator will be used exclusively for emergency use during involuntary loss of power, the BACT levels listed for IC compression engines in the Bay Area Air District BACT Guidelines would apply. These are provided for two separate size ranges of diesel engines:

I.C. Engine – Compression Ignition >50hp and <1.000hp: Bay Area Air District applies BACT 2 emission limits based on the ATCM for stationary emergency standby diesel engines larger than 50 brake-horsepower (BHP). NOx emission factor limit is subject to the CARB ATCM that ranges from 3.0 to 3.5 grams per horsepower hour (g/hp-hr). The PM (PM10 or PM2.5) limit is 0.15 g/hp-hr per CARB's ATCM.

I.C. Engine – Compression Ignition >999hp: Bay Area Air District applies specific BACT emission limits for stationary emergency standby diesel engines equal or larger than 1,000 brake-horsepower (BHP). NOx emission factor limit is subject to the CARB ATCM that ranges from 0.5 g/hp-hr. The PM (PM10 or PM2.5) limit is 0.02 g/hp-hr. POC (i.e., ROG) limits are 0.14 g/hp-hr.

Furnaces and Boilers and Water Heaters

In 2023, the Air District adopted the proposed amendments to Rules 9-4 and 9-6 that are intended to reduce emissions of NOx from residential and commercial water heaters. These amended rules will affect Bay Area households that use natural gas appliances by, essentially, prohibiting the installation of new natural gas-fired furnaces and water heaters. The rules require appliances that do not emit NOx. Currently, the only zero-NOx appliances available are electric appliances. Implementation begins in 2027, where only zero-NOx water heaters can be sold or installed, in 2029 where only zero-NOx furnaces can be sold or installed, and 2031 where only zero-NOx large commercial heaters can be sold or installed. Note that electric appliances would have zero emission of other criteria pollutants and zero emissions of direct GHG.

City of Hayward 2040 General Plan

The Hayward 2040 General Plan¹² outlines the long-range policy framework to guide decision-making related to land use, growth and development, safety, and open space conservation through 2040. The Natural Resources Element includes goals, policies, and implementation programs to reduce exposure of the City's sensitive population to exposure of air pollution, toxic air contaminants, and GHG emissions. The following goals, policies, and implementation programs are applicable to the proposed project:

¹² City of Hayward, *Hayward 2040 General Plan Policy Document*, July 2014. Web: https://www.hayward-ca.gov/sites/default/files/documents/General_Plan_FINAL.pdf

Goal NR-2: Improve the health and sustainability of the community through continued local efforts to improve regional air quality, reduce greenhouse gas emissions, and reduce community exposure to health risks associated with toxic air contaminants and fine particulate matter.

NR-2.1: Ambient Air Quality Standards. The City shall work with the California Air Resources Board and the Bay Area Air Quality Management District to meet State and Federal ambient air quality standards in order to protect all residents from the health effects of air pollution.

NR-2.2: New Development. The City shall review proposed development applications to ensure projects incorporate feasible measures that reduce construction and operational emissions for reactive organic gases (ROG), nitrogen oxides (NOX), and particulate matter (PM₁₀ and PM_{2.5}) through project location and design.

NR-2.3: Emissions Reduction. The City shall require development practices that exceed Bay Area Air Quality Management District reactive organic gas (ROG), nitrogen oxide (NOx) operational thresholds to incorporate design or operational features that reduce emissions equal to at least 15 percent below the level that would be produced by an unmitigated project.

NR-2.4: Community Greenhouse Gas Reduction. The City shall work with the community to reduce community-based GHG emissions by 20 percent below 2005 baseline levels by 2020, 30% below 2005 levels by 2025, and 55% below 2005 levels by 2030. In addition, the City shall work with the community to develop a plan that may result in the reduction of community-based GHG emissions to achieve carbon neutrality by 2045.

NR-2.5: Municipal Greenhouse Gas Reduction. The City shall reduce municipal greenhouse gas emissions by 20 percent below 2005 baseline levels by 2020, 30% below 2005 levels by 2025, and 55% below 2005 levels by 2030. In addition, the City shall develop a plan that may result in the reduction of municipal GHG emissions to achieve carbon neutrality by 2045

NR-2.6: Greenhouse Gas Reduction in New Development. The City shall reduce potential greenhouse gas emissions by discouraging new development that is primarily dependent on the private automobile; promoting infill development and/or new development that is compact, mixed-use pedestrian friendly, and transit oriented; promoting energy-efficient building design and site planning; and improving the regional jobs/housing balance ratio.

NR-2.13: Wood Stove and Fireplace Replacement. The City shall promote the replacement of non-EPA certified fireplaces and woodstoves and encourage city residents to participate in Bay Area Air Quality Management District programs, such as the Wood Stove Rebate Program.

NR-2.15: Community Risk Reduction Strategy. The City shall maintain and implement the General Plan as Hayward's community risk reduction strategy to reduce health risks associated with toxic air contaminants (TACs) and fine particulate matter (PM_{2.5}) in both existing and new development.

NR-2.16: Sensitive Uses. The City shall minimize exposure of sensitive receptors to toxic air contaminants (TAC), fine particulate matter (PM_{2.5}), and odors to the extent possible, and consider distance, orientation, and wind direction when siting sensitive land uses in proximity to TAC- and PM_{2.5}-emitting sources and odor sources in order to minimize health risk.

NR-2.18: Exposure Reduction Measures for New Receptors. The City shall require development projects to implement all applicable best management practices that will reduce exposure of new sensitive receptors (e.g., hospitals, schools, daycare facilities, elderly housing and convalescent facilities) to odors, toxic air contaminants (TAC) and fine particulate matter (PM_{2.5}).

Air Pollutant Emissions Impacts and Mitigation Measures

Impact AIR-1: **Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard?**

The Bay Area is considered a non-attainment area for ground-level O₃ and PM_{2.5} under both the NAAQS and the CAAQS. The area is also considered non-attainment for PM₁₀ under the CAAQS, but not the NAAQS. The area has attained both State and Federal ambient air quality standards for carbon monoxide. As part of an effort to attain and maintain ambient air quality standards for O₃, PM_{2.5} and PM₁₀, the Air District has established thresholds of significance for these air pollutants and their precursors. The O₃ precursor pollutant thresholds are for ROG and NOx, while PM₁₀, and PM_{2.5} have specific thresholds. The thresholds apply to both construction period emissions and operational period emissions.

Construction Period Emissions

The California Emissions Estimator Model (CalEEMod) Version 2022 was used to estimate emissions from on-site construction activity, construction vehicle trips, and evaporative emissions. The project land use types and size were input to CalEEMod. The CalEEMod model output along with construction inputs are included in *Attachment 1*.

CalEEMod Inputs

Land Use Inputs

The proposed project land uses were entered into CalEEMod as described in Table 2.

Table 2. Summary of Project Land Use Inputs

Project Land Uses	Size	Units	Square Feet (sf)	Acreage
Unrefrigerated Warehouse – No Rail	45.4	1,000-sf	45,402*	5.60
Parking Lot	274	1,000-sf	274,053	

*Includes both truck terminal and office square footage.

Construction Inputs

CalEEMod computes annual emissions for construction that are based on the project type, size, and acreage. The model provides emission estimates for both on-site and off-site construction activities. On-site activities are primarily made up of construction equipment emissions, while off-site activity includes worker, hauling, and vendor traffic. The construction build-out scenario, including equipment quantities, average hours per day, total number of workdays, and schedule, were provided by the applicant (see *Attachment 1*). The construction schedule assumed that the earliest possible start date would be October 2026 and the project would be built out over a period of approximately 15 months or 457 construction workdays. The earliest full year of operation was assumed to be 2028.

Construction Truck Traffic Emissions

Construction would produce traffic in the form of worker trips and truck traffic. The traffic-related emissions are based on worker and vendor trip estimates produced by CalEEMod and haul trips that were computed based on the amount of demolition material to be exported, soil imported and/or exported to the site, and the amount of concrete and asphalt truck trips to and from the site. CalEEMod provides daily estimates of worker and vendor trips for each applicable phase. Daily haul trips for demolition and grading were estimated by CalEEMod using the provided demolition and grading volumes. The number of concrete and asphalt total round haul trips were provided for the project and converted to daily one-way trips, assuming two trips per delivery. These values are shown in the project construction equipment worksheets included in *Attachment 1*.

Summary of Computed Construction Emissions

Average daily emissions were annualized for each year of construction by dividing the annual construction emissions by the number of active workdays during that year. Table 3 shows the unmitigated average daily construction emissions of ROG, NOx, PM₁₀ exhaust, and PM_{2.5} exhaust during construction of the project. As indicated in Table 3, predicted unmitigated project construction emissions would not exceed Bay Area Air District significance thresholds during construction.

Table 3. Construction Period Emissions - Unmitigated

Year	ROG	NOx	PM ₁₀ Exhaust	PM _{2.5} Exhaust
<i>Construction Emissions Per Year (Tons)</i>				
2026	0.06	0.58	0.02	0.02
2027	0.34	0.98	0.03	0.03
<i>Average Daily Construction Emissions Per Year (pounds/day)</i>				
2026 (92 construction workdays)	1.33	12.68	0.52	0.48
2027 (365 construction workdays)	1.85	5.36	0.18	0.16
<i>Bay Area Air District Thresholds (pounds per day)</i>	54 lbs./day	54 lbs./day	82 lbs./day	54 lbs./day
Exceed Threshold?	No	No	No	No

Construction activities, particularly during site preparation and grading, would temporarily generate fugitive dust in the form of PM₁₀ and PM_{2.5}. Sources of fugitive dust include disturbed soils at the construction site and trucks carrying uncovered loads of soils. Unless properly controlled, vehicles leaving the site deposit mud on local streets, which is an additional source of airborne dust after it dries. The Air District recommends all projects include a “basic” set of best management practices (BMPs) to manage fugitive dust and considers impacts from dust (i.e., fugitive PM₁₀ and PM_{2.5}) to be less-than-significant if BMPs are implemented.

Mitigation Measure AQ-1: Include measures to control dust and exhaust during construction.

During any construction period ground disturbance, the applicant shall ensure that the project contractor implement measures to control dust and exhaust. Implementation of the measures listed below would reduce the air quality impacts associated with grading and new construction to a less-than-significant level. The contractor shall implement the following BMPs that are required of all projects:

1. All exposed surfaces (e.g., parking areas, staging areas, soil piles, graded areas, and unpaved access roads) shall be watered two times per day.
2. All haul trucks transporting soil, sand, or other loose material off-site shall be covered.
3. All visible mud or dirt track-out onto adjacent public roads shall be removed using wet power vacuum street sweepers at least once per day. The use of dry power sweeping is prohibited.
4. All vehicle speeds on unpaved roads shall be limited to 15 miles per hour (mph).
5. All roadways, driveways, and sidewalks to be paved shall be completed as soon as possible. Building pads shall be laid as soon as possible after grading unless seeding or soil binders are used.
6. All excavation, grading, and/or demolition activities shall be suspended when average wind speeds exceed 20 mph.
7. All trucks and equipment, including their tires, shall be washed off prior to leaving the site.

8. Unpaved roads providing access to sites located 100 feet or further from a paved road shall be treated with a 6- to 12-inch layer of compacted layer of wood chips, mulch, or gravel.
9. Publicly visible signs shall be posted with the telephone number and name of the person to contact at the lead agency regarding dust complaints. This person shall respond and take corrective action within 48 hours. The Air District's General Air Pollution Complaints number shall also be visible to ensure compliance with applicable regulations.

Effectiveness of Mitigation Measure AQ-1

Mitigation Measure AQ-1 is consistent with Bay Area Air District -recommended basic BMPs for reducing fugitive dust contained in the Air District CEQA Air Quality Guidelines. For this analysis, only the basic set of BMPs are required as the Project emissions and PM_{2.5} impacts were below the Air District thresholds. Enhanced BMPs would be required as mitigation if air quality impacts were found to be significant.

Operational Period Emissions

Operational air emissions from the project would be generated primarily from trucks using the industrial warehouse and autos driven by future employees. Evaporative ROG emissions from architectural coatings and maintenance products (classified as consumer products) are also associated with these types of projects. CalEEMod was used to estimate emissions from operation of the proposed project assuming full build-out.

CalEEMod Inputs

Land Uses

The project land uses were input to CalEEMod as described above for the construction period modeling.

Model Year

Emissions associated with vehicle travel depend on the year of analysis because emission control technology requirements are phased-in over time. Therefore, the earlier the year analyzed in the model, the higher the emission rates utilized by CalEEMod. The earliest year of full operation would be 2028 if construction begins in 2026. Emissions associated with build-out later than 2028 would be lower.

Traffic Information

Traffic information developed for this project was incorporated into the CalEEMod modeling. The project-specific daily trip generation rate provided by the traffic consultant was entered into the model.¹³ The project would produce approximately 281 daily trips, or a net 168 daily trips when

¹³ Email from Carolyn Mogollon, AICP, David J. Powers & Associates, Inc., March 4, 2025. Subject: *Fw: Hayward CEQA Phase II + Remaining Data Needs*.

accounting for the existing use. The daily trip generation was calculated using ITE trip generation rates, the size of the project land uses, and the adjusted total automobile trips after reductions. The Saturday and Sunday trip rates were derived by multiplying the ratio of the CalEEMod default rates for Saturday and Sunday trips to the default weekday rate with the project-specific daily weekday trip rate. The analysis provided by the project's traffic consultant predicted that 90 percent of the traffic trips would be made by heavy-duty trucks. The fleet mix was adjusted in CalEEMod to represent this fleet mix. In CalEEMod, automobiles were assigned to the LDA and LDT category for passenger cars. Truck trips were assigned to the Heavy-Heavy-Duty-Diesel Truck (HHDT) category to represent truck trucks. The trip lengths were adjusted to 25 miles based on information provided by the applicant.

Energy

CalEEMod defaults for energy use were used that include the 2019 Title 24 Building Standards.¹⁴ GHG emissions modeling includes those indirect emissions from electricity consumption. The electricity produced emission rate was modified in CalEEMod. The energy provider for Hayward is Ava Community Energy (AVA), however AVA is not an option in CalEEMod when choosing an electricity provider. Instead, PG&E was chosen as the provider in CalEEMod. An emission factor of 160 pounds of CO₂ per megawatt of electricity produced was entered into CalEEMod, which is based on PG&E's 2020 emissions rate.¹⁵

The Project plans do not show any natural gas infrastructure, and the applicant has confirmed the building will be all electric. Therefore, natural gas use for the project land uses was set to zero and reassigned to electricity use in CalEEMod.

Other Inputs

Default model assumptions for emissions associated with solid waste generation and water use were used. Wastewater treatment was estimated to be 100% aerobic conditions to represent City wastewater treatment plant conditions. The project site would not send wastewater to on-site septic tanks or facultative lagoons.

Existing Uses

CalEEMod was used to estimate the emissions generated by operation of the existing industrial use. The 14,626-sf industrial building generates approximately 113 daily trips as estimated by the traffic consultant.¹⁶ Traffic assumptions were based on a similar vehicle fleet mix of 90 percent HHDT trucks. Trip lengths were not provided for the existing use; therefore, default trips lengths assigned by CalEEMod were used. CalEEMod defaults were used to estimate energy use emissions, including emissions from natural gas usage, and solid waste generation. Emissions from

¹⁴ The 2022 or 2025 Title 24 standards have not been incorporated into the current CalEEMod model, which uses Title 24 standards from 2019 (CalEEMod User Guide). The 2019 standards, and therefore the energy analysis, are more conservative.

¹⁵ PG&E, 2022. *PG&E Climate Strategy Report*, June 2022.

¹⁶ Email from Carolyn Mogollon, AICP, David J. Powers & Associates, Inc., March 4, 2025. Subject: *Fw: Hayward CEQA Phase II + Remaining Data Needs*.

wastewater use were based on 100 percent aerobic treatment to represent wastewater treatment plant conditions. The CalEEMod model inputs and output for the existing facility are included in *Attachment 1*.

Project Generator

The project would include one diesel-powered emergency generator located adjacent to the northeast corner of the building. The 750-kW generator would be powered by a 1,005-HP engine. The generator would be tested periodically and power the building in the event of a power failure. For modeling purposes, it was assumed that the generator would be operated for testing and maintenance purposes. CARB and Bay Area Air District requirements limit the engine operations to 50 hours each per year for testing and maintenance, and new Air District Guidelines recommend including 100 hours each year for non-testing and non-maintenance operations. During testing periods, the engine would typically run for less than one hour. The engine would be required to meet CARB and EPA emission standards and consume commercially available California low-sulfur diesel fuel. Additionally, the generators would have to meet Air District BACT requirements for IC Engine-Compression Ignition: Stationary Emergency, non-Agricultural, non-direct drive fire pump sources. These include emission limits similar to U.S. EPA Tier 4 standards for the engine larger than 1,000-HP. The emissions from the operation of the generator were calculated using CalEEMod.

Off-Road Mobile Equipment

The project is anticipated to include the use of forklifts and possibly other off-road equipment that is typical for warehouse uses. The equipment would be used to move products throughout the warehouse prior to shipping and for truck loading/unloading. All off-road equipment would be electric-powered. Emissions from off-road mobile equipment are expected to be negligible and are not included in this analysis. Trucks equipped with TRUs in operation would not be used by the Project.

Summary of Computed Operational Emissions

Annual emissions were predicted using CalEEMod and daily emissions were estimated assuming 365 days of operation. Table 4 shows unmitigated net average daily operational emissions of ROG, NOx, total PM₁₀, and total PM_{2.5} during operation of the project. Operational period emissions would not exceed the Bay Area Air District significance thresholds.

Table 4. Operational Period Emissions

Scenario	ROG	NOx	PM ₁₀	PM _{2.5}
2028 Annual Project Operational Emissions (tons/year)	0.35	4.49	1.20	0.37
Existing Use Emissions (tons/year)	0.10	0.91	0.18	0.06
Net Operational Emissions (tons/year)	0.25	3.59	1.02	0.31
Bay Area Air District Thresholds (tons/year)	10 tons	10 tons	15 tons	10 tons
Exceed Threshold?	No	No	No	No
2028 Daily Project Operational Emissions (pounds/day) ¹	1.39	19.66	5.58	1.70
Bay Area Air District Thresholds (pounds/day)	54 lbs.	54 lbs.	82 lbs.	54 lbs.
Exceed Threshold?	No	No	No	No

Notes: ¹ Assumes 365-day operation.

Impact AIR-2: Expose sensitive receptors to substantial pollutant concentrations?

The California Department of Justice recommends in their BMPs to address exposure of sensitive receptors to TACs and air pollution. Under this BMP, projects that may result in TAC emissions that are located within 1,000 feet of sensitive receptors are recommended to prepare a Health Risk Assessment (HRA). This guidance is similar to that provided by the Air District in their CEQA Air Quality Guidelines. Since the proposed project is over 1,000 feet from any sensitive receptors, an HRA was not required. The impacts to sensitive receptors are identified as less-than-significant.

Supporting Documentation

Attachment 1 includes the CalEEMod output for project construction and operational criteria air pollutant emissions. Also included are any modeling assumptions.

Attachment 1: CalEEMod Modeling Inputs and Outputs

Construction Criteria Air Pollutants							
Unmitigated	ROG	NOX	PM10 Exhaust	PM2.5 Exhaust	PM2.5 Fugitive	CO2e	
Year	Tons					MT	
Construction Equipment							
2026	0.06	0.58	0.02	0.02	0.10	130.33	
2027	0.34	0.98	0.03	0.03	0.11	279.38	
	<i>Total Construction Emissions</i>						
Tons	0.40	1.56	0.06	0.05		409.71	
Pounds/Workdays	<i>Average Daily Emissions</i>					Workdays	
2026	1.33	12.68	0.52	0.48			92
2027	1.85	5.36	0.18	0.16			365
Threshold - lbs/day	54.0	54.0	82.0	54.0			
	<i>Total Construction Emissions</i>						
Pounds	798.64	3124.80	114.29	103.78		0.00	
Average	1.75	6.84	0.25	0.23		0.00	457.00
Threshold - lbs/day	54.0	54.0	82.0	54.0			
Operational Criteria Air Pollutants							
Unmitigated	ROG	NOX	Total PM10	Total PM2.5			
Year	Tons						
Total	0.35	4.49	1.20	0.37			
	<i>Existing Use Emissions</i>						
Total	0.10	0.91	0.18	0.06			
	<i>Net Annual Operational Emissions</i>						
Tons/year	0.25	3.59	1.02	0.31			
Threshold - Tons/year	10.0	10.0	15.0	10.0			
	<i>Average Daily Emissions</i>						
Pounds Per Day	1.39	19.66	5.58	1.70			
Threshold - lbs/day	54.0	54.0	82.0	54.0			

Number of Days Per Year

2026	10/1/2026	12/31/26	92	92
2027	1/1/27	12/31/2027	365	365
			457	457 Total Workdays

Phase	Start Date	End Date	Days/Week	Workdays
Demolition	10/1/2026	10/31/2026	7	31
Site Preparation	11/1/2026	12/31/2026	7	61
Grading	1/1/2027	2/28/2027	7	59
Building Construction	8/1/2027	9/30/2027	7	61
Paving	12/1/2027	12/31/2027	7	31
Architectural Coating	10/1/2027	11/30/2027	7	61
Trenching	3/1/2027	7/31/2027	7	153

Air Quality/Noise Construction Information Data Request

Project Name: 2256 Claremont Court Industrial Project See Equipment Type TAB for type, horsepower and load factor						Complete ALL Portions in Yellow								
<div style="display: flex; justify-content: space-between;"> <div style="width: 45%;"> <p>Project Size</p> <p>Dwelling Units 5.6 total project acres disturbed</p> <p>0 s.f. residential</p> <p>0 s.f. retail</p> <p>5,119 s.f. office/commercial</p> <p>40,283 s.f. other, specify: Truck Terminal</p> <p>0 s.f. parking garage - spaces</p> <p>274,053 s.f. parking lot 48 standard / 123 truck spaces</p> </div> <div style="width: 45%;"> <p>Pile Driving? Y/N? No.</p> <p>Project include on-site GENERATOR OR FIRE PUMP during project OPERATION (not construction)? Y/N? Yes.</p> <p>IF YES (if BOTH separate values) --></p> <p>Kilowatts/Horsepower: 750 KW</p> <p>Fuel Type: Diesel</p> <p>Location in project (Plans Desired if Available): shown on resubmittal</p> </div> </div>						DO NOT MULTIPLY EQUIPMENT HOURS/DAY BY THE QUANTITY OF EQUIPMENT								
						Construction Days (i.e. M-F) 7 days to -								
						Construction Hours 7 M to Sat, 10 Sun/Ham to 7 M to Sat, 6 Sun/Hopm								
Quantity	Description	HP	Load Factor	Hours/day	Total Work Days	Avg. Hours per day	HP Annual Hours	Comments						
Overall Import/Export Volumes														
Demolition Volume														
Square footage of buildings to be demolished (or total tons to be hauled)														
14626 square feet or ? Hauling volume (tons)														
Any pavement demolished and hauled? 3300 CY or 4,455 tons (assumes 2700 lb/CY)														
Soil Hauling Volume														
Export volume = 1100 cubic yards? Import volume = 12100 cubic yards?														
Electric? (Y/N) No, assumed diesel Liquid Propane (LPG)? No, assumed diesel Or temporary line power? Yes														
Cement Trucks? 250 to 500 Total Round-Trips														
Asphalt? 1800 cubic yards or ____ round trips?														
Complete one sheet for each project component														
Equipment types listed in "Equipment Types" worksheet tab.														
Equipment listed in this sheet is to provide an example of inputs														
It is assumed that water trucks would be used during grading														
Add or subtract phases and equipment, as appropriate														
Modify horsepower or load factor, as appropriate														

Traffic Consultant Trip Gen					CalEEMod Default			
Land Use	Size	Daily Trips	New Trips	Weekday Trip Gen	Weekday	Sat	Sun	
Unrefrigerated Warehouse ksf	45.402	281	281	6.19	1.74	1.74	1.74	

<i>Existing</i>							
General Light Industry	ksf	14.626	113	113	7.73	4.96	1.99
					Rev	3.10	7.79

Land Use	ITE Trip Generation Manual Land Use Code	Size (TSF)	Weekday Daily	Weekday AM Peak Hour			Weekday PM Peak Hour			
				In	Out	Total	In	Out	Total	
Proposed Project	155 (Sort)	43.7	281	31	7	38	20	32	52	
Existing Industrial Use	N/A	N/A	113 ¹	9	17	26	11	10	21	
Net New Trips (Proposed – Existing)				168	22	-10	12	9	22	31
Auto Trips (10%)				17	2	N/A	1	1	2	3
Truck Trips (90%) ²				151	20	N/A	11	8	20	28

Notes: TSF= thousand square feet

¹ Daily trips were estimated using the ratio of the ITE 155 (Sort) weekday daily and PM peak hour trip generation and applying the ratio to the counted weekday PM peak hour trips generation for the existing use.

² Based on the applicant's business and operations plan dated February 2024, 90% of trips are computed to be truck traffic (10% are autos). Appendix M contains the business and operations plan.

The fleet mix is unknown at this time, but the assumption for a truck terminal is 80% of the trucks are 5-axle and 20% are 3 to 4-axle.

24-116 2256 Claremont Ct, Hayward T4F 2028 Detailed Report

Table of Contents

1. Basic Project Information

1.1. Basic Project Information

1.2. Land Use Types

1.3. User-Selected Emission Reduction Measures by Emissions Sector

2. Emissions Summary

2.1. Construction Emissions Compared Against Thresholds

2.2. Construction Emissions by Year, Unmitigated

2.3. Construction Emissions by Year, Mitigated

2.4. Operations Emissions Compared Against Thresholds

2.5. Operations Emissions by Sector, Unmitigated

2.6. Operations Emissions by Sector, Mitigated

3. Construction Emissions Details

3.1. Demolition (2026) - Unmitigated

3.2. Demolition (2026) - Mitigated

3.3. Site Preparation (2026) - Unmitigated

3.4. Site Preparation (2026) - Mitigated

3.5. Grading (2027) - Unmitigated

3.6. Grading (2027) - Mitigated

3.7. Building Construction (2027) - Unmitigated

3.8. Building Construction (2027) - Mitigated

3.9. Paving (2027) - Unmitigated

3.10. Paving (2027) - Mitigated

3.11. Architectural Coating (2027) - Unmitigated

3.12. Architectural Coating (2027) - Mitigated

3.13. Trenching (2027) - Unmitigated

3.14. Trenching (2027) - Mitigated

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

4.1.2. Mitigated

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

4.2.2. Electricity Emissions By Land Use - Mitigated

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

4.2.4. Natural Gas Emissions By Land Use - Mitigated

4.3. Area Emissions by Source

4.3.1. Unmitigated

4.3.2. Mitigated

4.4. Water Emissions by Land Use

4.4.1. Unmitigated

4.4.2. Mitigated

4.5. Waste Emissions by Land Use

4.5.1. Unmitigated

4.5.2. Mitigated

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

4.6.2. Mitigated

4.7. Offroad Emissions By Equipment Type

4.7.1. Unmitigated

4.7.2. Mitigated

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

4.8.2. Mitigated

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

4.9.2. Mitigated

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

4.10.4. Soil Carbon Accumulation By Vegetation Type - Mitigated

4.10.5. Above and Belowground Carbon Accumulation by Land Use Type - Mitigated

4.10.6. Avoided and Sequestered Emissions by Species - Mitigated

5. Activity Data

5.1. Construction Schedule

5.2. Off-Road Equipment

5.2.1. Unmitigated

5.2.2. Mitigated

5.3. Construction Vehicles

5.3.1. Unmitigated

5.3.2. Mitigated

5.4. Vehicles

5.4.1. Construction Vehicle Control Strategies

5.5. Architectural Coatings

5.6. Dust Mitigation

5.6.1. Construction Earthmoving Activities

5.6.2. Construction Earthmoving Control Strategies

5.7. Construction Paving

5.8. Construction Electricity Consumption and Emissions Factors

5.9. Operational Mobile Sources

5.9.1. Unmitigated

5.9.2. Mitigated

5.10. Operational Area Sources

5.10.1. Hearths

5.10.1.1. Unmitigated

5.10.1.2. Mitigated

5.10.2. Architectural Coatings

5.10.3. Landscape Equipment

5.10.4. Landscape Equipment - Mitigated

5.11. Operational Energy Consumption

5.11.1. Unmitigated

5.11.2. Mitigated

5.12. Operational Water and Wastewater Consumption

5.12.1. Unmitigated

5.12.2. Mitigated

5.13. Operational Waste Generation

5.13.1. Unmitigated

5.13.2. Mitigated

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

5.14.2. Mitigated

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

5.15.2. Mitigated

5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

5.16.2. Process Boilers

5.17. User Defined

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

5.18.1.2. Mitigated

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

5.18.1.2. Mitigated

5.18.2. Sequestration

5.18.2.1. Unmitigated

5.18.2.2. Mitigated

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

6.2. Initial Climate Risk Scores

6.3. Adjusted Climate Risk Scores

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

7.2. Healthy Places Index Scores

7.3. Overall Health & Equity Scores

7.4. Health & Equity Measures

7.5. Evaluation Scorecard

7.6. Health & Equity Custom Measures

8. User Changes to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	24-116 2256 Claremont Ct, Hayward T4F 2028
Construction Start Date	10/1/2026
Operational Year	2028
Lead Agency	—
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	3.30
Precipitation (days)	30.0
Location	2256 Claremont Ct, Hayward, CA 94545, USA
County	Alameda
City	Hayward
Air District	Bay Area AQMD
Air Basin	San Francisco Bay Area
TAZ	1650
EDFZ	1
Electric Utility	Pacific Gas & Electric Company
Gas Utility	Pacific Gas & Electric
App Version	2022.1.1.29

1.2. Land Use Types

Land Use Subtype	Size	Unit	Lot Acreage	Building Area (sq ft)	Landscape Area (sq ft)	Special Landscape Area (sq ft)	Population	Description
Unrefrigerated Warehouse-No Rail	45.4	1000sqft	5.60	45,402	0.00	—	—	—

Parking Lot	274	1000sqft	0.00	0.00	0.00	—	—	—
-------------	-----	----------	------	------	------	---	---	---

1.3. User-Selected Emission Reduction Measures by Emissions Sector

Sector	#	Measure Title
Construction	C-5	Use Advanced Engine Tiers
Construction	C-10-A	Water Exposed Surfaces
Construction	C-11	Limit Vehicle Speeds on Unpaved Roads

2. Emissions Summary

2.1. Construction Emissions Compared Against Thresholds

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Un/Mit.	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Unmit.	1.05	9.82	0.29	0.51	0.80	0.26	0.13	0.39	3,329
Mit.	0.38	5.89	0.09	0.51	0.60	0.08	0.13	0.21	3,329
% Reduced	64%	40%	70%	—	25%	70%	—	46%	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Unmit.	7.89	15.9	0.58	7.70	8.28	0.52	3.59	4.11	5,071
Mit.	7.80	5.27	0.09	3.37	3.45	0.08	1.50	1.57	5,071
% Reduced	1%	67%	84%	56%	58%	85%	58%	62%	—
Average Daily (Max)	—	—	—	—	—	—	—	—	—
Unmit.	1.85	5.36	0.18	1.38	1.56	0.16	0.61	0.78	1,687
Mit.	1.45	2.23	0.04	0.68	0.72	0.03	0.28	0.31	1,687
% Reduced	21%	58%	80%	51%	54%	81%	55%	60%	—
Annual (Max)	—	—	—	—	—	—	—	—	—

Unmit.	0.34	0.98	0.03	0.25	0.28	0.03	0.11	0.14	279
Mit.	0.27	0.41	0.01	0.12	0.13	0.01	0.05	0.06	279
% Reduced	21%	58%	80%	51%	54%	81%	55%	60%	—

2.2. Construction Emissions by Year, Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Year	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily - Summer (Max)	—	—	—	—	—	—	—	—	—
2027	1.05	9.82	0.29	0.51	0.80	0.26	0.13	0.39	3,329
Daily - Winter (Max)	—	—	—	—	—	—	—	—	—
2026	1.48	15.9	0.55	6.33	6.83	0.50	3.02	3.48	5,071
2027	7.89	14.6	0.58	7.70	8.28	0.52	3.59	4.11	4,519
Average Daily	—	—	—	—	—	—	—	—	—
2026	0.34	3.20	0.13	1.16	1.29	0.12	0.53	0.65	787
2027	1.85	5.36	0.18	1.38	1.56	0.16	0.61	0.78	1,687
Annual	—	—	—	—	—	—	—	—	—
2026	0.06	0.58	0.02	0.21	0.24	0.02	0.10	0.12	130
2027	0.34	0.98	0.03	0.25	0.28	0.03	0.11	0.14	279

2.3. Construction Emissions by Year, Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Year	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily - Summer (Max)	—	—	—	—	—	—	—	—	—
2027	0.38	5.89	0.09	0.51	0.60	0.08	0.13	0.21	3,329
Daily - Winter (Max)	—	—	—	—	—	—	—	—	—

2026	0.34	5.27	0.09	2.50	2.54	0.08	1.19	1.22	5,071
2027	7.80	3.58	0.08	3.37	3.45	0.07	1.50	1.57	4,519
Average Daily	—	—	—	—	—	—	—	—	—
2026	0.06	0.61	0.01	0.52	0.54	0.01	0.22	0.23	787
2027	1.45	2.23	0.04	0.68	0.72	0.03	0.28	0.31	1,687
Annual	—	—	—	—	—	—	—	—	—
2026	0.01	0.11	< 0.005	0.10	0.10	< 0.005	0.04	0.04	130
2027	0.27	0.41	0.01	0.12	0.13	0.01	0.05	0.06	279

2.4. Operations Emissions Compared Against Thresholds

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Un/Mit.	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Unmit.	1.88	23.7	0.36	6.29	6.65	0.35	1.68	2.03	22,552
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Unmit.	1.53	25.0	0.36	6.29	6.65	0.34	1.68	2.03	22,479
Average Daily (Max)	—	—	—	—	—	—	—	—	—
Unmit.	1.93	24.6	0.36	6.19	6.56	0.35	1.66	2.01	22,613
Annual (Max)	—	—	—	—	—	—	—	—	—
Unmit.	0.35	4.49	0.07	1.13	1.20	0.06	0.30	0.37	3,744

2.5. Operations Emissions by Sector, Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Sector	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—

Mobile	0.46	23.6	0.36	6.29	6.65	0.34	1.68	2.03	22,161
Area	1.43	0.02	< 0.005	—	< 0.005	< 0.005	—	< 0.005	8.15
Energy	0.00	0.00	0.00	—	0.00	0.00	—	0.00	233
Water	—	—	—	—	—	—	—	—	69.2
Waste	—	—	—	—	—	—	—	—	80.5
Stationary	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	1.88	23.7	0.36	6.29	6.65	0.35	1.68	2.03	22,552
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Mobile	0.43	25.0	0.36	6.29	6.65	0.34	1.68	2.03	22,097
Area	1.10	—	—	—	—	—	—	—	—
Energy	0.00	0.00	0.00	—	0.00	0.00	—	0.00	233
Water	—	—	—	—	—	—	—	—	69.2
Waste	—	—	—	—	—	—	—	—	80.5
Stationary	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	1.53	25.0	0.36	6.29	6.65	0.34	1.68	2.03	22,479
Average Daily	—	—	—	—	—	—	—	—	—
Mobile	0.44	24.5	0.36	6.19	6.55	0.34	1.66	2.00	22,111
Area	1.26	0.01	< 0.005	—	< 0.005	< 0.005	—	< 0.005	4.02
Energy	0.00	0.00	0.00	—	0.00	0.00	—	0.00	233
Water	—	—	—	—	—	—	—	—	69.2
Waste	—	—	—	—	—	—	—	—	80.5
Stationary	0.23	0.11	< 0.005	0.00	< 0.005	< 0.005	0.00	< 0.005	116
Total	1.93	24.6	0.36	6.19	6.56	0.35	1.66	2.01	22,613
Annual	—	—	—	—	—	—	—	—	—
Mobile	0.08	4.47	0.07	1.13	1.20	0.06	0.30	0.37	3,661
Area	0.23	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	0.67
Energy	0.00	0.00	0.00	—	0.00	0.00	—	0.00	38.6
Water	—	—	—	—	—	—	—	—	11.4

Waste	—	—	—	—	—	—	—	—	—	13.3
Stationary	0.04	0.02	< 0.005	0.00	< 0.005	< 0.005	0.00	< 0.005	19.2	
Total	0.35	4.49	0.07	1.13	1.20	0.06	0.30	0.37	3,744	

2.6. Operations Emissions by Sector, Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Sector	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Mobile	0.46	23.6	0.36	6.29	6.65	0.34	1.68	2.03	22,161
Area	1.43	0.02	< 0.005	—	< 0.005	< 0.005	—	< 0.005	8.15
Energy	0.00	0.00	0.00	—	0.00	0.00	—	0.00	233
Water	—	—	—	—	—	—	—	—	69.2
Waste	—	—	—	—	—	—	—	—	80.5
Stationary	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	1.88	23.7	0.36	6.29	6.65	0.35	1.68	2.03	22,552
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Mobile	0.43	25.0	0.36	6.29	6.65	0.34	1.68	2.03	22,097
Area	1.10	—	—	—	—	—	—	—	—
Energy	0.00	0.00	0.00	—	0.00	0.00	—	0.00	233
Water	—	—	—	—	—	—	—	—	69.2
Waste	—	—	—	—	—	—	—	—	80.5
Stationary	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	1.53	25.0	0.36	6.29	6.65	0.34	1.68	2.03	22,479
Average Daily	—	—	—	—	—	—	—	—	—
Mobile	0.44	24.5	0.36	6.19	6.55	0.34	1.66	2.00	22,111
Area	1.26	0.01	< 0.005	—	< 0.005	< 0.005	—	< 0.005	4.02
Energy	0.00	0.00	0.00	—	0.00	0.00	—	0.00	233

Water	—	—	—	—	—	—	—	—	69.2
Waste	—	—	—	—	—	—	—	—	80.5
Stationary	0.23	0.11	< 0.005	0.00	< 0.005	< 0.005	0.00	< 0.005	116
Total	1.93	24.6	0.36	6.19	6.56	0.35	1.66	2.01	22,613
Annual	—	—	—	—	—	—	—	—	—
Mobile	0.08	4.47	0.07	1.13	1.20	0.06	0.30	0.37	3,661
Area	0.23	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	0.67
Energy	0.00	0.00	0.00	—	0.00	0.00	—	0.00	38.6
Water	—	—	—	—	—	—	—	—	11.4
Waste	—	—	—	—	—	—	—	—	13.3
Stationary	0.04	0.02	< 0.005	0.00	< 0.005	< 0.005	0.00	< 0.005	19.2
Total	0.35	4.49	0.07	1.13	1.20	0.06	0.30	0.37	3,744

3. Construction Emissions Details

3.1. Demolition (2026) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Onsite	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Off-Road Equipment	1.39	12.9	0.51	—	0.51	0.47	—	0.47	2,503
Demolition	—	—	—	0.48	0.48	—	0.07	0.07	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—

Off-Road Equipment	0.12	1.10	0.04	—	0.04	0.04	—	0.04	213
Demolition	—	—	—	0.04	0.04	—	0.01	0.01	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.02	0.20	0.01	—	0.01	0.01	—	0.01	35.2
Demolition	—	—	—	0.01	0.01	—	< 0.005	< 0.005	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Worker	0.04	0.04	0.00	0.10	0.10	0.00	0.02	0.02	99.9
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.05	2.97	0.05	0.63	0.68	0.03	0.17	0.20	2,468
Average Daily	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	0.00	0.01	0.01	0.00	< 0.005	< 0.005	8.55
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	0.25	< 0.005	0.05	0.06	< 0.005	0.01	0.02	210
Annual	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	1.41
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	0.05	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	34.7

3.2. Demolition (2026) - Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
----------	-----	-----	-------	-------	-------	--------	--------	--------	------

Onsite	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.25	2.27	0.05	—	0.05	0.05	—	0.05	2,503
Demolition	—	—	—	0.48	0.48	—	0.07	0.07	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.02	0.19	< 0.005	—	< 0.005	< 0.005	—	< 0.005	213
Demolition	—	—	—	0.04	0.04	—	0.01	0.01	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—
Off-Road Equipment	< 0.005	0.04	< 0.005	—	< 0.005	< 0.005	—	< 0.005	35.2
Demolition	—	—	—	0.01	0.01	—	< 0.005	< 0.005	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Worker	0.04	0.04	0.00	0.10	0.10	0.00	0.02	0.02	99.9
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.05	2.97	0.05	0.63	0.68	0.03	0.17	0.20	2,468
Average Daily	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	0.00	0.01	0.01	0.00	< 0.005	< 0.005	8.55
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	0.25	< 0.005	0.05	0.06	< 0.005	0.01	0.02	210

Annual	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	1.41
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	0.05	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	34.7

3.3. Site Preparation (2026) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Onsite	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Off-Road Equipment	1.24	11.0	0.51	—	0.51	0.47	—	0.47	2,072
Dust From Material Movement	—	—	—	6.26	6.26	—	3.00	3.00	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.21	1.84	0.08	—	0.08	0.08	—	0.08	346
Dust From Material Movement	—	—	—	1.05	1.05	—	0.50	0.50	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.04	0.34	0.02	—	0.02	0.01	—	0.01	57.3
Dust From Material Movement	—	—	—	0.19	0.19	—	0.09	0.09	—

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Worker	0.02	0.02	0.00	0.06	0.06	0.00	0.01	0.01	59.9
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	0.00	0.01	0.01	0.00	< 0.005	< 0.005	10.1
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	1.67
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.4. Site Preparation (2026) - Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Onsite	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.19	1.01	0.04	—	0.04	0.04	—	0.04	2,072
Dust From Material Movement	—	—	—	2.44	2.44	—	1.17	1.17	—

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.03	0.17	0.01	—	0.01	0.01	—	0.01	346
Dust From Material Movement	—	—	—	0.41	0.41	—	0.20	0.20	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.01	0.03	< 0.005	—	< 0.005	< 0.005	—	< 0.005	57.3
Dust From Material Movement	—	—	—	0.07	0.07	—	0.04	0.04	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Worker	0.02	0.02	0.00	0.06	0.06	0.00	0.01	0.01	59.9
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	0.00	0.01	0.01	0.00	< 0.005	< 0.005	10.1
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	1.67
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.5. Grading (2027) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Onsite	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Off-Road Equipment	1.37	12.2	0.54	—	0.54	0.50	—	0.50	2,464
Dust From Material Movement	—	—	—	7.10	7.10	—	3.43	3.43	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.22	1.97	0.09	—	0.09	0.08	—	0.08	398
Dust From Material Movement	—	—	—	1.15	1.15	—	0.55	0.55	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.04	0.36	0.02	—	0.02	0.01	—	0.01	65.9
Dust From Material Movement	—	—	—	0.21	0.21	—	0.10	0.10	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—

Worker	0.03	0.03	0.00	0.08	0.08	0.00	0.02	0.02	78.4
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.03	2.35	0.04	0.52	0.56	0.02	0.14	0.17	1,977
Average Daily	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	0.00	0.01	0.01	0.00	< 0.005	< 0.005	12.8
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	0.37	0.01	0.08	0.09	< 0.005	0.02	0.03	320
Annual	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	2.11
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	0.07	< 0.005	0.02	0.02	< 0.005	< 0.005	< 0.005	52.9

3.6. Grading (2027) - Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Onsite	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.23	1.20	0.05	—	0.05	0.05	—	0.05	2,464
Dust From Material Movement	—	—	—	2.77	2.77	—	1.34	1.34	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.04	0.19	0.01	—	0.01	0.01	—	0.01	398

Dust From Material Movement	—	—	—	0.45	0.45	—	0.22	0.22	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.01	0.04	< 0.005	—	< 0.005	< 0.005	—	< 0.005	65.9
Dust From Material Movement	—	—	—	0.08	0.08	—	0.04	0.04	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Worker	0.03	0.03	0.00	0.08	0.08	0.00	0.02	0.02	78.4
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.03	2.35	0.04	0.52	0.56	0.02	0.14	0.17	1,977
Average Daily	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	0.00	0.01	0.01	0.00	< 0.005	< 0.005	12.8
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	0.37	0.01	0.08	0.09	< 0.005	0.02	0.03	320
Annual	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	2.11
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	0.07	< 0.005	0.02	0.02	< 0.005	< 0.005	< 0.005	52.9

3.7. Building Construction (2027) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
----------	-----	-----	-------	-------	-------	--------	--------	--------	------

Onsite	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.97	8.25	0.26	—	0.26	0.24	—	0.24	1,807
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Average Daily	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.16	1.38	0.04	—	0.04	0.04	—	0.04	302
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.03	0.25	0.01	—	0.01	0.01	—	0.01	50.0
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Worker	0.05	0.04	0.00	0.16	0.16	0.00	0.04	0.04	161
Vendor	0.01	0.22	< 0.005	0.05	0.06	< 0.005	0.01	0.02	200
Hauling	0.02	1.31	0.02	0.30	0.33	0.01	0.08	0.10	1,160
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Average Daily	—	—	—	—	—	—	—	—	—
Worker	0.01	0.01	0.00	0.03	0.03	0.00	0.01	0.01	25.2
Vendor	< 0.005	0.04	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	33.4
Hauling	< 0.005	0.23	< 0.005	0.05	0.05	< 0.005	0.01	0.02	194
Annual	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	4.17
Vendor	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	5.54

Hauling	< 0.005	0.04	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	32.1
---------	---------	------	---------	------	------	---------	---------	---------	------

3.8. Building Construction (2027) - Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Onsite	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.30	4.33	0.06	—	0.06	0.06	—	0.06	1,807
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Average Daily	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.05	0.72	0.01	—	0.01	0.01	—	0.01	302
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.01	0.13	< 0.005	—	< 0.005	< 0.005	—	< 0.005	50.0
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Worker	0.05	0.04	0.00	0.16	0.16	0.00	0.04	0.04	161
Vendor	0.01	0.22	< 0.005	0.05	0.06	< 0.005	0.01	0.02	200
Hauling	0.02	1.31	0.02	0.30	0.33	0.01	0.08	0.10	1,160
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Average Daily	—	—	—	—	—	—	—	—	—
Worker	0.01	0.01	0.00	0.03	0.03	0.00	0.01	0.01	25.2

Vendor	< 0.005	0.04	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	33.4
Hauling	< 0.005	0.23	< 0.005	0.05	0.05	< 0.005	0.01	0.02	194
Annual	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	4.17
Vendor	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	5.54
Hauling	< 0.005	0.04	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	32.1

3.9. Paving (2027) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Onsite	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.46	4.30	0.17	—	0.17	0.16	—	0.16	995
Paving	0.00	—	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.04	0.37	0.01	—	0.01	0.01	—	0.01	84.5
Paving	0.00	—	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.01	0.07	< 0.005	—	< 0.005	< 0.005	—	< 0.005	14.0
Paving	0.00	—	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—

Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Worker	0.03	0.03	0.00	0.10	0.10	0.00	0.02	0.02	98.1
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.01	1.17	0.02	0.26	0.28	0.01	0.07	0.08	985
Average Daily	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	0.00	0.01	0.01	0.00	< 0.005	< 0.005	8.39
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	0.10	< 0.005	0.02	0.02	< 0.005	0.01	0.01	83.7
Annual	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	1.39
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	0.02	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	13.9

3.10. Paving (2027) - Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Onsite	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.14	1.30	0.03	—	0.03	0.03	—	0.03	995
Paving	0.00	—	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—

Off-Road Equipment	0.01	0.11	< 0.005	—	< 0.005	< 0.005	—	< 0.005	84.5
Paving	0.00	—	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—
Off-Road Equipment	< 0.005	0.02	< 0.005	—	< 0.005	< 0.005	—	< 0.005	14.0
Paving	0.00	—	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Worker	0.03	0.03	0.00	0.10	0.10	0.00	0.02	0.02	98.1
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.01	1.17	0.02	0.26	0.28	0.01	0.07	0.08	985
Average Daily	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	0.00	0.01	0.01	0.00	< 0.005	< 0.005	8.39
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	0.10	< 0.005	0.02	0.02	< 0.005	0.01	0.01	83.7
Annual	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	1.39
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	0.02	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	13.9

3.11. Architectural Coating (2027) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
----------	-----	-----	-------	-------	-------	--------	--------	--------	------

Onsite	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.11	0.83	0.02	—	0.02	0.02	—	0.02	134
Architectural Coatings	7.76	—	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.02	0.14	< 0.005	—	< 0.005	< 0.005	—	< 0.005	22.4
Architectural Coatings	1.30	—	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—
Off-Road Equipment	< 0.005	0.03	< 0.005	—	< 0.005	< 0.005	—	< 0.005	3.71
Architectural Coatings	0.24	—	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Worker	0.01	0.01	0.00	0.03	0.03	0.00	0.01	0.01	29.9
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	0.00	0.01	0.01	0.00	< 0.005	< 0.005	5.04

Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.83
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.12. Architectural Coating (2027) - Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Onsite	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.02	0.65	< 0.005	—	< 0.005	< 0.005	—	< 0.005	134
Architectural Coatings	7.76	—	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—
Off-Road Equipment	< 0.005	0.11	< 0.005	—	< 0.005	< 0.005	—	< 0.005	22.4
Architectural Coatings	1.30	—	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—
Off-Road Equipment	< 0.005	0.02	< 0.005	—	< 0.005	< 0.005	—	< 0.005	3.71
Architectural Coatings	0.24	—	—	—	—	—	—	—	—

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Worker	0.01	0.01	0.00	0.03	0.03	0.00	0.01	0.01	29.9
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	0.00	0.01	0.01	0.00	< 0.005	< 0.005	5.04
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.83
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.13. Trenching (2027) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Onsite	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.19	1.80	0.05	—	0.05	0.05	—	0.05	434
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—

Off-Road Equipment	0.19	1.80	0.05	—	0.05	0.05	—	0.05	434
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.08	0.76	0.02	—	0.02	0.02	—	0.02	182
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.01	0.14	< 0.005	—	< 0.005	< 0.005	—	< 0.005	30.1
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Worker	0.01	0.01	0.00	0.04	0.04	0.00	0.01	0.01	42.3
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Worker	0.01	0.01	0.00	0.04	0.04	0.00	0.01	0.01	39.2
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—
Worker	0.01	< 0.005	0.00	0.02	0.02	0.00	< 0.005	< 0.005	16.6
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	2.74
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.14. Trenching (2027) - Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Onsite	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.05	0.81	0.01	—	0.01	0.01	—	0.01	434
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.05	0.81	0.01	—	0.01	0.01	—	0.01	434
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.02	0.34	< 0.005	—	< 0.005	< 0.005	—	< 0.005	182
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—
Off-Road Equipment	< 0.005	0.06	< 0.005	—	< 0.005	< 0.005	—	< 0.005	30.1
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Worker	0.01	0.01	0.00	0.04	0.04	0.00	0.01	0.01	42.3
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Worker	0.01	0.01	0.00	0.04	0.04	0.00	0.01	0.01	39.2

Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—
Worker	0.01	< 0.005	0.00	0.02	0.02	0.00	< 0.005	< 0.005	16.6	
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	2.74	
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Unrefrigerated Warehouse-No Rail	0.46	23.6	0.36	6.29	6.65	0.34	1.68	2.03	22,161
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.46	23.6	0.36	6.29	6.65	0.34	1.68	2.03	22,161
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Unrefrigerated Warehouse-No Rail	0.43	25.0	0.36	6.29	6.65	0.34	1.68	2.03	22,097
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Total	0.43	25.0	0.36	6.29	6.65	0.34	1.68	2.03	22,097
Annual	—	—	—	—	—	—	—	—	—
Unrefrigerated Warehouse-No Rail	0.08	4.47	0.07	1.13	1.20	0.06	0.30	0.37	3,661
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.08	4.47	0.07	1.13	1.20	0.06	0.30	0.37	3,661

4.1.2. Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Unrefrigerated Warehouse-No Rail	0.46	23.6	0.36	6.29	6.65	0.34	1.68	2.03	22,161
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.46	23.6	0.36	6.29	6.65	0.34	1.68	2.03	22,161
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Unrefrigerated Warehouse-No Rail	0.43	25.0	0.36	6.29	6.65	0.34	1.68	2.03	22,097
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.43	25.0	0.36	6.29	6.65	0.34	1.68	2.03	22,097
Annual	—	—	—	—	—	—	—	—	—
Unrefrigerated Warehouse-No Rail	0.08	4.47	0.07	1.13	1.20	0.06	0.30	0.37	3,661
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.08	4.47	0.07	1.13	1.20	0.06	0.30	0.37	3,661

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Unrefrigerated Warehouse-No Rail	—	—	—	—	—	—	—	—	233
Parking Lot	—	—	—	—	—	—	—	—	0.00
Total	—	—	—	—	—	—	—	—	233
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Unrefrigerated Warehouse-No Rail	—	—	—	—	—	—	—	—	233
Parking Lot	—	—	—	—	—	—	—	—	0.00
Total	—	—	—	—	—	—	—	—	233
Annual	—	—	—	—	—	—	—	—	—
Unrefrigerated Warehouse-No Rail	—	—	—	—	—	—	—	—	38.6
Parking Lot	—	—	—	—	—	—	—	—	0.00
Total	—	—	—	—	—	—	—	—	38.6

4.2.2. Electricity Emissions By Land Use - Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—

Unrefrigerated Warehouse-No Rail	—	—	—	—	—	—	—	—	—	233
Parking Lot	—	—	—	—	—	—	—	—	—	0.00
Total	—	—	—	—	—	—	—	—	—	233
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—
Unrefrigerated Warehouse-No Rail	—	—	—	—	—	—	—	—	—	233
Parking Lot	—	—	—	—	—	—	—	—	—	0.00
Total	—	—	—	—	—	—	—	—	—	233
Annual	—	—	—	—	—	—	—	—	—	—
Unrefrigerated Warehouse-No Rail	—	—	—	—	—	—	—	—	—	38.6
Parking Lot	—	—	—	—	—	—	—	—	—	0.00
Total	—	—	—	—	—	—	—	—	—	38.6

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Unrefrigerated Warehouse-No Rail	0.00	0.00	0.00	—	0.00	0.00	—	0.00	0.00
Parking Lot	0.00	0.00	0.00	—	0.00	0.00	—	0.00	0.00
Total	0.00	0.00	0.00	—	0.00	0.00	—	0.00	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—

Unrefrigerated Warehouse-No Rail	0.00	0.00	0.00	—	0.00	0.00	—	0.00	0.00
Parking Lot	0.00	0.00	0.00	—	0.00	0.00	—	0.00	0.00
Total	0.00	0.00	0.00	—	0.00	0.00	—	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—
Unrefrigerated Warehouse-No Rail	0.00	0.00	0.00	—	0.00	0.00	—	0.00	0.00
Parking Lot	0.00	0.00	0.00	—	0.00	0.00	—	0.00	0.00
Total	0.00	0.00	0.00	—	0.00	0.00	—	0.00	0.00

4.2.4. Natural Gas Emissions By Land Use - Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Unrefrigerated Warehouse-No Rail	0.00	0.00	0.00	—	0.00	0.00	—	0.00	0.00
Parking Lot	0.00	0.00	0.00	—	0.00	0.00	—	0.00	0.00
Total	0.00	0.00	0.00	—	0.00	0.00	—	0.00	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Unrefrigerated Warehouse-No Rail	0.00	0.00	0.00	—	0.00	0.00	—	0.00	0.00
Parking Lot	0.00	0.00	0.00	—	0.00	0.00	—	0.00	0.00
Total	0.00	0.00	0.00	—	0.00	0.00	—	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—
Unrefrigerated Warehouse-No Rail	0.00	0.00	0.00	—	0.00	0.00	—	0.00	0.00

Parking Lot	0.00	0.00	0.00	—	0.00	0.00	—	0.00	0.00
Total	0.00	0.00	0.00	—	0.00	0.00	—	0.00	0.00

4.3. Area Emissions by Source

4.3.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Source	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Consumer Products	0.97	—	—	—	—	—	—	—	—
Architectural Coatings	0.13	—	—	—	—	—	—	—	—
Landscape Equipment	0.32	0.02	< 0.005	—	< 0.005	< 0.005	—	< 0.005	8.15
Total	1.43	0.02	< 0.005	—	< 0.005	< 0.005	—	< 0.005	8.15
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Consumer Products	0.97	—	—	—	—	—	—	—	—
Architectural Coatings	0.13	—	—	—	—	—	—	—	—
Total	1.10	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—
Consumer Products	0.18	—	—	—	—	—	—	—	—
Architectural Coatings	0.02	—	—	—	—	—	—	—	—
Landscape Equipment	0.03	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	0.67
Total	0.23	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	0.67

4.3.2. Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Source	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Consumer Products	0.97	—	—	—	—	—	—	—	—
Architectural Coatings	0.13	—	—	—	—	—	—	—	—
Landscape Equipment	0.32	0.02	< 0.005	—	< 0.005	< 0.005	—	< 0.005	8.15
Total	1.43	0.02	< 0.005	—	< 0.005	< 0.005	—	< 0.005	8.15
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Consumer Products	0.97	—	—	—	—	—	—	—	—
Architectural Coatings	0.13	—	—	—	—	—	—	—	—
Total	1.10	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—
Consumer Products	0.18	—	—	—	—	—	—	—	—
Architectural Coatings	0.02	—	—	—	—	—	—	—	—
Landscape Equipment	0.03	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	0.67
Total	0.23	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	0.67

4.4. Water Emissions by Land Use

4.4.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Unrefrigerated Warehouse-No Rail	—	—	—	—	—	—	—	—	69.2
Parking Lot	—	—	—	—	—	—	—	—	0.00
Total	—	—	—	—	—	—	—	—	69.2
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Unrefrigerated Warehouse-No Rail	—	—	—	—	—	—	—	—	69.2
Parking Lot	—	—	—	—	—	—	—	—	0.00
Total	—	—	—	—	—	—	—	—	69.2
Annual	—	—	—	—	—	—	—	—	—
Unrefrigerated Warehouse-No Rail	—	—	—	—	—	—	—	—	11.4
Parking Lot	—	—	—	—	—	—	—	—	0.00
Total	—	—	—	—	—	—	—	—	11.4

4.4.2. Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Unrefrigerated Warehouse-No Rail	—	—	—	—	—	—	—	—	69.2
Parking Lot	—	—	—	—	—	—	—	—	0.00
Total	—	—	—	—	—	—	—	—	69.2

Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—
Unrefrigerated Warehouse-No Rail	—	—	—	—	—	—	—	—	—	69.2
Parking Lot	—	—	—	—	—	—	—	—	—	0.00
Total	—	—	—	—	—	—	—	—	—	69.2
Annual	—	—	—	—	—	—	—	—	—	—
Unrefrigerated Warehouse-No Rail	—	—	—	—	—	—	—	—	—	11.4
Parking Lot	—	—	—	—	—	—	—	—	—	0.00
Total	—	—	—	—	—	—	—	—	—	11.4

4.5. Waste Emissions by Land Use

4.5.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Unrefrigerated Warehouse-No Rail	—	—	—	—	—	—	—	—	80.5
Parking Lot	—	—	—	—	—	—	—	—	0.00
Total	—	—	—	—	—	—	—	—	80.5
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Unrefrigerated Warehouse-No Rail	—	—	—	—	—	—	—	—	80.5
Parking Lot	—	—	—	—	—	—	—	—	0.00

Total	—	—	—	—	—	—	—	—	—	80.5
Annual	—	—	—	—	—	—	—	—	—	—
Unrefrigerated Warehouse-No Rail	—	—	—	—	—	—	—	—	—	13.3
Parking Lot	—	—	—	—	—	—	—	—	—	0.00
Total	—	—	—	—	—	—	—	—	—	13.3

4.5.2. Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Unrefrigerated Warehouse-No Rail	—	—	—	—	—	—	—	—	80.5
Parking Lot	—	—	—	—	—	—	—	—	0.00
Total	—	—	—	—	—	—	—	—	80.5
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Unrefrigerated Warehouse-No Rail	—	—	—	—	—	—	—	—	80.5
Parking Lot	—	—	—	—	—	—	—	—	0.00
Total	—	—	—	—	—	—	—	—	80.5
Annual	—	—	—	—	—	—	—	—	—
Unrefrigerated Warehouse-No Rail	—	—	—	—	—	—	—	—	13.3
Parking Lot	—	—	—	—	—	—	—	—	0.00
Total	—	—	—	—	—	—	—	—	13.3

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—

4.6.2. Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—

4.7. Offroad Emissions By Equipment Type

4.7.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipment Type	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—

4.7.2. Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipment Type	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipment Type	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—

Emergency Generator	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Emergency Generator	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—
Emergency Generator	0.04	0.02	< 0.005	0.00	< 0.005	< 0.005	0.00	< 0.005	19.2
Total	0.04	0.02	< 0.005	0.00	< 0.005	< 0.005	0.00	< 0.005	19.2

4.8.2. Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipment Type	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Emergency Generator	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Emergency Generator	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—
Emergency Generator	0.04	0.02	< 0.005	0.00	< 0.005	< 0.005	0.00	< 0.005	19.2
Total	0.04	0.02	< 0.005	0.00	< 0.005	< 0.005	0.00	< 0.005	19.2

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipment Type	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—

4.9.2. Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipment Type	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Vegetation	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Species	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Avoided	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—

Sequestered	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—
Removed	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—
Avoided	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—
Sequestered	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—
Removed	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—
Avoided	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—
Sequestered	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—
Removed	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—	—

4.10.4. Soil Carbon Accumulation By Vegetation Type - Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Vegetation	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—

Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—

4.10.5. Above and Belowground Carbon Accumulation by Land Use Type - Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—

4.10.6. Avoided and Sequestered Emissions by Species - Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Species	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Avoided	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—
Sequestered	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—
Removed	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—

—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—
Avoided	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—
Sequestered	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—
Removed	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—
Avoided	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—
Sequestered	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—
Removed	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—	—	—

5. Activity Data

5.1. Construction Schedule

Phase Name	Phase Type	Start Date	End Date	Days Per Week	Work Days per Phase	Phase Description
Demolition	Demolition	10/1/2026	10/31/2026	7.00	31.0	—
Site Preparation	Site Preparation	11/1/2026	12/31/2026	7.00	61.0	—
Grading	Grading	1/1/2027	2/28/2027	7.00	59.0	—
Building Construction	Building Construction	8/1/2027	9/30/2027	7.00	61.0	—
Paving	Paving	12/1/2027	12/31/2027	7.00	31.0	—

Architectural Coating	Architectural Coating	10/1/2027	11/30/2027	7.00	61.0	—
Trenching	Trenching	3/1/2027	7/31/2027	7.00	153	—

5.2. Off-Road Equipment

5.2.1. Unmitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
Demolition	Concrete/Industrial Saws	Diesel	Average	1.00	8.00	33.0	0.73
Demolition	Rubber Tired Dozers	Diesel	Average	1.00	8.00	367	0.40
Demolition	Tractors/Loaders/Back hoes	Diesel	Average	3.00	8.00	84.0	0.37
Site Preparation	Rubber Tired Dozers	Diesel	Average	1.00	7.00	367	0.40
Site Preparation	Tractors/Loaders/Back hoes	Diesel	Average	1.00	8.00	84.0	0.37
Site Preparation	Graders	Diesel	Average	1.00	8.00	148	0.41
Grading	Graders	Diesel	Average	1.00	8.00	148	0.41
Grading	Rubber Tired Dozers	Diesel	Average	1.00	8.00	367	0.40
Grading	Tractors/Loaders/Back hoes	Diesel	Average	2.00	7.00	84.0	0.37
Building Construction	Cranes	Diesel	Average	1.00	6.00	367	0.29
Building Construction	Forklifts	Diesel	Average	1.00	6.00	82.0	0.20
Building Construction	Generator Sets	Diesel	Average	1.00	8.00	14.0	0.74
Building Construction	Tractors/Loaders/Back hoes	Diesel	Average	1.00	6.00	84.0	0.37
Building Construction	Welders	Diesel	Average	3.00	8.00	46.0	0.45
Paving	Pavers	Diesel	Average	1.00	6.00	81.0	0.42
Paving	Paving Equipment	Diesel	Average	1.00	8.00	89.0	0.36
Paving	Rollers	Diesel	Average	1.00	7.00	36.0	0.38

Paving	Cement and Mortar Mixers	Diesel	Average	1.00	6.00	10.0	0.56
Paving	Tractors/Loaders/Back hoes	Diesel	Average	1.00	8.00	84.0	0.37
Architectural Coating	Air Compressors	Diesel	Average	1.00	6.00	37.0	0.48
Trenching	Tractors/Loaders/Back hoes	Diesel	Average	1.00	8.00	84.0	0.37
Trenching	Excavators	Diesel	Average	1.00	8.00	36.0	0.38

5.2.2. Mitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
Demolition	Concrete/Industrial Saws	Diesel	Tier 4 Final	1.00	8.00	33.0	0.73
Demolition	Rubber Tired Dozers	Diesel	Tier 4 Final	1.00	8.00	367	0.40
Demolition	Tractors/Loaders/Back hoes	Diesel	Tier 4 Final	3.00	8.00	84.0	0.37
Site Preparation	Rubber Tired Dozers	Diesel	Tier 4 Final	1.00	7.00	367	0.40
Site Preparation	Tractors/Loaders/Back hoes	Diesel	Tier 4 Final	1.00	8.00	84.0	0.37
Site Preparation	Graders	Diesel	Tier 4 Final	1.00	8.00	148	0.41
Grading	Graders	Diesel	Tier 4 Final	1.00	8.00	148	0.41
Grading	Rubber Tired Dozers	Diesel	Tier 4 Final	1.00	8.00	367	0.40
Grading	Tractors/Loaders/Back hoes	Diesel	Tier 4 Final	2.00	7.00	84.0	0.37
Building Construction	Cranes	Diesel	Tier 4 Final	1.00	6.00	367	0.29
Building Construction	Forklifts	Diesel	Tier 4 Final	1.00	6.00	82.0	0.20
Building Construction	Generator Sets	Diesel	Average	1.00	8.00	14.0	0.74
Building Construction	Tractors/Loaders/Back hoes	Diesel	Tier 4 Final	1.00	6.00	84.0	0.37
Building Construction	Welders	Diesel	Tier 4 Final	3.00	8.00	46.0	0.45
Paving	Pavers	Diesel	Tier 4 Final	1.00	6.00	81.0	0.42

Paving	Paving Equipment	Diesel	Tier 4 Final	1.00	8.00	89.0	0.36
Paving	Rollers	Diesel	Tier 4 Final	1.00	7.00	36.0	0.38
Paving	Cement and Mortar Mixers	Diesel	Average	1.00	6.00	10.0	0.56
Paving	Tractors/Loaders/Back hoes	Diesel	Tier 4 Final	1.00	8.00	84.0	0.37
Architectural Coating	Air Compressors	Diesel	Tier 4 Final	1.00	6.00	37.0	0.48
Trenching	Tractors/Loaders/Back hoes	Diesel	Tier 4 Final	1.00	8.00	84.0	0.37
Trenching	Excavators	Diesel	Tier 4 Final	1.00	8.00	36.0	0.38

5.3. Construction Vehicles

5.3.1. Unmitigated

Phase Name	Trip Type	One-Way Trips per Day	Miles per Trip	Vehicle Mix
Demolition	—	—	—	—
Demolition	Worker	12.5	11.7	LDA,LDT1,LDT2
Demolition	Vendor	—	8.40	HHDT,MHDT
Demolition	Hauling	34.2	20.0	HHDT
Demolition	Onsite truck	—	—	HHDT
Site Preparation	—	—	—	—
Site Preparation	Worker	7.50	11.7	LDA,LDT1,LDT2
Site Preparation	Vendor	—	8.40	HHDT,MHDT
Site Preparation	Hauling	0.00	20.0	HHDT
Site Preparation	Onsite truck	—	—	HHDT
Grading	—	—	—	—
Grading	Worker	10.0	11.7	LDA,LDT1,LDT2
Grading	Vendor	—	8.40	HHDT,MHDT
Grading	Hauling	28.0	20.0	HHDT

Grading	Onsite truck	—	—	HHDT
Building Construction	—	—	—	—
Building Construction	Worker	19.1	11.7	LDA,LDT1,LDT2
Building Construction	Vendor	7.44	8.40	HHDT,MHDT
Building Construction	Hauling	16.4	20.0	HHDT
Building Construction	Onsite truck	—	—	HHDT
Paving	—	—	—	—
Paving	Worker	12.5	11.7	LDA,LDT1,LDT2
Paving	Vendor	—	8.40	HHDT,MHDT
Paving	Hauling	13.9	20.0	HHDT
Paving	Onsite truck	—	—	HHDT
Architectural Coating	—	—	—	—
Architectural Coating	Worker	3.81	11.7	LDA,LDT1,LDT2
Architectural Coating	Vendor	—	8.40	HHDT,MHDT
Architectural Coating	Hauling	0.00	20.0	HHDT
Architectural Coating	Onsite truck	—	—	HHDT
Trenching	—	—	—	—
Trenching	Worker	5.00	11.7	LDA,LDT1,LDT2
Trenching	Vendor	—	8.40	HHDT,MHDT
Trenching	Hauling	0.00	20.0	HHDT
Trenching	Onsite truck	—	—	HHDT

5.3.2. Mitigated

Phase Name	Trip Type	One-Way Trips per Day	Miles per Trip	Vehicle Mix
Demolition	—	—	—	—
Demolition	Worker	12.5	11.7	LDA,LDT1,LDT2
Demolition	Vendor	—	8.40	HHDT,MHDT
Demolition	Hauling	34.2	20.0	HHDT

Demolition	Onsite truck	—	—	HHDT
Site Preparation	—	—	—	—
Site Preparation	Worker	7.50	11.7	LDA,LDT1,LDT2
Site Preparation	Vendor	—	8.40	HHDT,MHDT
Site Preparation	Hauling	0.00	20.0	HHDT
Site Preparation	Onsite truck	—	—	HHDT
Grading	—	—	—	—
Grading	Worker	10.0	11.7	LDA,LDT1,LDT2
Grading	Vendor	—	8.40	HHDT,MHDT
Grading	Hauling	28.0	20.0	HHDT
Grading	Onsite truck	—	—	HHDT
Building Construction	—	—	—	—
Building Construction	Worker	19.1	11.7	LDA,LDT1,LDT2
Building Construction	Vendor	7.44	8.40	HHDT,MHDT
Building Construction	Hauling	16.4	20.0	HHDT
Building Construction	Onsite truck	—	—	HHDT
Paving	—	—	—	—
Paving	Worker	12.5	11.7	LDA,LDT1,LDT2
Paving	Vendor	—	8.40	HHDT,MHDT
Paving	Hauling	13.9	20.0	HHDT
Paving	Onsite truck	—	—	HHDT
Architectural Coating	—	—	—	—
Architectural Coating	Worker	3.81	11.7	LDA,LDT1,LDT2
Architectural Coating	Vendor	—	8.40	HHDT,MHDT
Architectural Coating	Hauling	0.00	20.0	HHDT
Architectural Coating	Onsite truck	—	—	HHDT
Trenching	—	—	—	—
Trenching	Worker	5.00	11.7	LDA,LDT1,LDT2

Trenching	Vendor	—	8.40	HHDT,MHDT
Trenching	Hauling	0.00	20.0	HHDT
Trenching	Onsite truck	—	—	HHDT

5.4. Vehicles

5.4.1. Construction Vehicle Control Strategies

Non-applicable. No control strategies activated by user.

5.5. Architectural Coatings

Phase Name	Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
Architectural Coating	0.00	0.00	68,103	22,701	—

5.6. Dust Mitigation

5.6.1. Construction Earthmoving Activities

Phase Name	Material Imported (cy)	Material Exported (cy)	Acres Graded (acres)	Material Demolished (Building Square Footage)	Acres Paved (acres)
Demolition	0.00	0.00	0.00	14,626	—
Site Preparation	—	—	57.2	0.00	—
Grading	12,100	1,100	59.0	0.00	—
Paving	0.00	0.00	0.00	0.00	0.00

5.6.2. Construction Earthmoving Control Strategies

Non-applicable. No control strategies activated by user.

5.7. Construction Paving

Land Use	Area Paved (acres)	% Asphalt
Unrefrigerated Warehouse-No Rail	0.00	0%

Parking Lot	0.00	100%
-------------	------	------

5.8. Construction Electricity Consumption and Emissions Factors

kWh per Year and Emission Factor (lb/MWh)

Year	kWh per Year	CO2	CH4	N2O
2026	0.00	204	0.03	< 0.005
2027	0.00	204	0.03	< 0.005

5.9. Operational Mobile Sources

5.9.1. Unmitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday	Trips/Year	VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
Unrefrigerated Warehouse-No Rail	281	281	281	102,579	7,026	7,026	7,026	2,564,475
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

5.9.2. Mitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday	Trips/Year	VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
Unrefrigerated Warehouse-No Rail	281	281	281	102,579	7,026	7,026	7,026	2,564,475
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

5.10. Operational Area Sources

5.10.1. Hearths

5.10.1.1. Unmitigated

5.10.1.2. Mitigated

5.10.2. Architectural Coatings

Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
0	0.00	68,103	22,701	—

5.10.3. Landscape Equipment

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	180

5.10.4. Landscape Equipment - Mitigated

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	180

5.11. Operational Energy Consumption

5.11.1. Unmitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBtu/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBtu/yr)
Unrefrigerated Warehouse-No Rail	524,742	160	0.0330	0.0040	0.00
Parking Lot	0.00	160	0.0330	0.0040	0.00

5.11.2. Mitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBtu/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBtu/yr)

Unrefrigerated Warehouse-No Rail	524,742	160	0.0330	0.0040	0.00
Parking Lot	0.00	160	0.0330	0.0040	0.00

5.12. Operational Water and Wastewater Consumption

5.12.1. Unmitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)
Unrefrigerated Warehouse-No Rail	10,499,213	0.00
Parking Lot	0.00	0.00

5.12.2. Mitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)
Unrefrigerated Warehouse-No Rail	10,499,213	0.00
Parking Lot	0.00	0.00

5.13. Operational Waste Generation

5.13.1. Unmitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)
Unrefrigerated Warehouse-No Rail	42.7	—
Parking Lot	0.00	—

5.13.2. Mitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)
Unrefrigerated Warehouse-No Rail	42.7	—
Parking Lot	0.00	—

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced
---------------	----------------	-------------	-----	---------------	----------------------	-------------------	----------------

5.14.2. Mitigated

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced
---------------	----------------	-------------	-----	---------------	----------------------	-------------------	----------------

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
----------------	-----------	-------------	----------------	---------------	------------	-------------

5.15.2. Mitigated

Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
----------------	-----------	-------------	----------------	---------------	------------	-------------

5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

Equipment Type	Fuel Type	Number per Day	Hours per Day	Hours per Year	Horsepower	Load Factor
Emergency Generator	Diesel	1.00	0.00	50.0	1,005	0.73

5.16.2. Process Boilers

Equipment Type	Fuel Type	Number	Boiler Rating (MMBtu/hr)	Daily Heat Input (MMBtu/day)	Annual Heat Input (MMBtu/yr)
----------------	-----------	--------	--------------------------	------------------------------	------------------------------

5.17. User Defined

Equipment Type	Fuel Type
----------------	-----------

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

Vegetation Land Use Type	Vegetation Soil Type	Initial Acres	Final Acres
--------------------------	----------------------	---------------	-------------

5.18.1.2. Mitigated

Vegetation Land Use Type	Vegetation Soil Type	Initial Acres	Final Acres
--------------------------	----------------------	---------------	-------------

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

Biomass Cover Type	Initial Acres	Final Acres
--------------------	---------------	-------------

5.18.1.2. Mitigated

Biomass Cover Type	Initial Acres	Final Acres
--------------------	---------------	-------------

5.18.2. Sequestration

5.18.2.1. Unmitigated

Tree Type	Number	Electricity Saved (kWh/year)	Natural Gas Saved (btu/year)
-----------	--------	------------------------------	------------------------------

5.18.2.2. Mitigated

Tree Type	Number	Electricity Saved (kWh/year)	Natural Gas Saved (btu/year)
-----------	--------	------------------------------	------------------------------

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

Climate Hazard	Result for Project Location	Unit
Temperature and Extreme Heat	14.0	annual days of extreme heat
Extreme Precipitation	3.50	annual days with precipitation above 20 mm
Sea Level Rise	—	meters of inundation depth
Wildfire	0.00	annual hectares burned

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about $\frac{3}{4}$ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (Radke et al., 2017, CEC-500-2017-008), and consider inundation location and depth for the San Francisco Bay, the Sacramento-San Joaquin River Delta and California coast resulting different increments of sea level rise coupled with extreme storm events. Users may select from four scenarios to view the range in potential inundation depth for the grid cell. The four scenarios are: No rise, 0.5 meter, 1.0 meter, 1.41 meters

Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

6.2. Initial Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	N/A	N/A	N/A	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	N/A	N/A	N/A
Wildfire	N/A	N/A	N/A	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	0	0	0	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

6.3. Adjusted Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	N/A	N/A	N/A	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	N/A	N/A	N/A
Wildfire	N/A	N/A	N/A	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	1	1	1	2

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Exposure Indicators	—
AQ-Ozone	13.6

AQ-PM	30.2
AQ-DPM	88.8
Drinking Water	6.74
Lead Risk Housing	48.0
Pesticides	0.00
Toxic Releases	57.0
Traffic	81.8
Effect Indicators	—
CleanUp Sites	27.5
Groundwater	39.6
Haz Waste Facilities/Generators	89.5
Impaired Water Bodies	12.5
Solid Waste	0.00
Sensitive Population	—
Asthma	91.0
Cardio-vascular	80.7
Low Birth Weights	95.2
Socioeconomic Factor Indicators	—
Education	44.0
Housing	4.25
Linguistic	36.5
Poverty	33.5
Unemployment	25.2

7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Economic	—

Above Poverty	74.99037598
Employed	71.06377518
Median HI	69.43410753
Education	—
Bachelor's or higher	37.61067625
High school enrollment	100
Preschool enrollment	26.03618632
Transportation	—
Auto Access	59.70742974
Active commuting	28.02515078
Social	—
2-parent households	58.89901193
Voting	40.63903503
Neighborhood	—
Alcohol availability	74.79789555
Park access	54.17682536
Retail density	78.08289491
Supermarket access	28.01231875
Tree canopy	22.32773001
Housing	—
Homeownership	92.2751187
Housing habitability	69.04914667
Low-inc homeowner severe housing cost burden	71.96201719
Low-inc renter severe housing cost burden	28.7052483
Uncrowded housing	33.53009111
Health Outcomes	—
Insured adults	69.70358014
Arthritis	29.1

Asthma ER Admissions	5.7
High Blood Pressure	65.9
Cancer (excluding skin)	29.3
Asthma	72.9
Coronary Heart Disease	37.1
Chronic Obstructive Pulmonary Disease	53.7
Diagnosed Diabetes	38.1
Life Expectancy at Birth	38.1
Cognitively Disabled	56.3
Physically Disabled	29.8
Heart Attack ER Admissions	6.1
Mental Health Not Good	67.2
Chronic Kidney Disease	35.4
Obesity	77.3
Pedestrian Injuries	75.3
Physical Health Not Good	55.3
Stroke	39.4
Health Risk Behaviors	—
Binge Drinking	77.5
Current Smoker	67.4
No Leisure Time for Physical Activity	47.6
Climate Change Exposures	—
Wildfire Risk	0.0
SLR Inundation Area	16.1
Children	77.6
Elderly	48.0
English Speaking	51.0
Foreign-born	83.2

Outdoor Workers	57.4
Climate Change Adaptive Capacity	—
Impervious Surface Cover	14.6
Traffic Density	87.4
Traffic Access	65.1
Other Indices	—
Hardship	43.2
Other Decision Support	—
2016 Voting	32.4

7.3. Overall Health & Equity Scores

Metric	Result for Project Census Tract
CalEnviroScreen 4.0 Score for Project Location (a)	56.0
Healthy Places Index Score for Project Location (b)	63.0
Project Located in a Designated Disadvantaged Community (Senate Bill 535)	No
Project Located in a Low-Income Community (Assembly Bill 1550)	No
Project Located in a Community Air Protection Program Community (Assembly Bill 617)	No

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

7.4. Health & Equity Measures

No Health & Equity Measures selected.

7.5. Evaluation Scorecard

Health & Equity Evaluation Scorecard not completed.

7.6. Health & Equity Custom Measures

No Health & Equity Custom Measures created.

8. User Changes to Default Data

Screen	Justification
Construction: Construction Phases	Information provided by applicant. 7 day workweek.
Construction: Off-Road Equipment	Defaults - added trenching. Reviewed and confirmed by applicant.
Characteristics: Utility Information	Hayward clean energy provider (AVA) is not an option so therefore PG&E used. PG&E rate = 160 lb/MWh.
Land Use	Total lot acreage from filled out construction worksheet. Square footage for warehouse from provided project description. Parking lot square footage provided by applicant.
Construction: Trips and VMT	Demolition = 4,455 tons of pavement demo'ed and hauled (28.74 trips/day), Building Construction = 500 concrete truck round trips (16.393 trips/day), Paving = 1,800-cy of asphalt (13.935 trips/day).
Construction: On-Road Fugitive Dust	Air district BMPS = 15 mph. Required by Hayward general plan.
Operations: Energy Use	Project design is all-electric. Confirmed no natural gas in provided project description. Convert natural gas to electricity.
Operations: Water and Waste Water	Wastewater treatment 100% aerobic - no septic tanks or lagoons.
Operations: Generators + Pumps EF	Generator greater than 1,000-hp required BACT Tier 4. Gen changes for >1,000-hp Tier 4 engine "Generator greater than 1,000-hp required BACT Tier 4 , NOx = 0.05 g/bhp-hr, PMs = 0.02 g/bhp-hp
Operations: Vehicle Data	Provided trip gen. 25 miles trip length provided by applicant.
Operations: Fleet Mix	Fleet mix - auto trips and truck trips.

24-116 2256 Claremont Ct, Hayward Existing Detailed Report

Table of Contents

1. Basic Project Information

1.1. Basic Project Information

1.2. Land Use Types

1.3. User-Selected Emission Reduction Measures by Emissions Sector

2. Emissions Summary

2.4. Operations Emissions Compared Against Thresholds

2.5. Operations Emissions by Sector, Unmitigated

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

4.3. Area Emissions by Source

4.3.1. Unmitigated

4.4. Water Emissions by Land Use

4.4.1. Unmitigated

4.5. Waste Emissions by Land Use

4.5.1. Unmitigated

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

4.7. Offroad Emissions By Equipment Type

4.7.1. Unmitigated

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

5. Activity Data

5.9. Operational Mobile Sources

5.9.1. Unmitigated

5.10. Operational Area Sources

5.10.1. Hearths

5.10.1.1. Unmitigated

5.10.2. Architectural Coatings

5.10.3. Landscape Equipment

5.11. Operational Energy Consumption

5.11.1. Unmitigated

5.12. Operational Water and Wastewater Consumption

5.12.1. Unmitigated

5.13. Operational Waste Generation

5.13.1. Unmitigated

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

5.16.2. Process Boilers

5.17. User Defined

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

5.18.2. Sequestration

5.18.2.1. Unmitigated

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

6.2. Initial Climate Risk Scores

6.3. Adjusted Climate Risk Scores

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

7.2. Healthy Places Index Scores

7.3. Overall Health & Equity Scores

7.4. Health & Equity Measures

7.5. Evaluation Scorecard

7.6. Health & Equity Custom Measures

8. User Changes to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	24-116 2256 Claremont Ct, Hayward Existing
Operational Year	2025
Lead Agency	—
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	3.30
Precipitation (days)	30.0
Location	2256 Claremont Ct, Hayward, CA 94545, USA
County	Alameda
City	Hayward
Air District	Bay Area AQMD
Air Basin	San Francisco Bay Area
TAZ	1650
EDFZ	1
Electric Utility	Pacific Gas & Electric Company
Gas Utility	Pacific Gas & Electric
App Version	2022.1.1.29

1.2. Land Use Types

Land Use Subtype	Size	Unit	Lot Acreage	Building Area (sq ft)	Landscape Area (sq ft)	Special Landscape Area (sq ft)	Population	Description
General Light Industry	14.6	1000sqft	0.34	14,626	0.00	—	—	—

1.3. User-Selected Emission Reduction Measures by Emissions Sector

No measures selected

2. Emissions Summary

2.4. Operations Emissions Compared Against Thresholds

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Un/Mit.	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Unmit.	0.61	5.27	0.07	1.02	1.09	0.07	0.27	0.34	4,292
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Unmit.	0.50	5.56	0.07	1.02	1.09	0.07	0.27	0.34	4,279
Average Daily (Max)	—	—	—	—	—	—	—	—	—
Unmit.	0.54	4.97	0.07	0.91	0.98	0.07	0.24	0.31	3,921
Annual (Max)	—	—	—	—	—	—	—	—	—
Unmit.	0.10	0.91	0.01	0.17	0.18	0.01	0.04	0.06	649

2.5. Operations Emissions by Sector, Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Sector	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Mobile	0.14	5.10	0.06	1.02	1.08	0.06	0.27	0.33	3,952
Area	0.46	0.01	< 0.005	—	< 0.005	< 0.005	—	< 0.005	2.63
Energy	0.01	0.17	0.01	—	0.01	0.01	—	0.01	277
Water	—	—	—	—	—	—	—	—	22.3

Waste	—	—	—	—	—	—	—	—	34.2
Refrig.	—	—	—	—	—	—	—	—	3.81
Total	0.61	5.27	0.07	1.02	1.09	0.07	0.27	0.34	4,292
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Mobile	0.13	5.38	0.06	1.02	1.08	0.06	0.27	0.33	3,942
Area	0.35	—	—	—	—	—	—	—	—
Energy	0.01	0.17	0.01	—	0.01	0.01	—	0.01	277
Water	—	—	—	—	—	—	—	—	22.3
Waste	—	—	—	—	—	—	—	—	34.2
Refrig.	—	—	—	—	—	—	—	—	3.81
Total	0.50	5.56	0.07	1.02	1.09	0.07	0.27	0.34	4,279
Average Daily	—	—	—	—	—	—	—	—	—
Mobile	0.12	4.79	0.05	0.91	0.97	0.05	0.24	0.30	3,583
Area	0.41	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	1.29
Energy	0.01	0.17	0.01	—	0.01	0.01	—	0.01	277
Water	—	—	—	—	—	—	—	—	22.3
Waste	—	—	—	—	—	—	—	—	34.2
Refrig.	—	—	—	—	—	—	—	—	3.81
Total	0.54	4.97	0.07	0.91	0.98	0.07	0.24	0.31	3,921
Annual	—	—	—	—	—	—	—	—	—
Mobile	0.02	0.87	0.01	0.17	0.18	0.01	0.04	0.05	593
Area	0.07	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	0.21
Energy	< 0.005	0.03	< 0.005	—	< 0.005	< 0.005	—	< 0.005	45.8
Water	—	—	—	—	—	—	—	—	3.69
Waste	—	—	—	—	—	—	—	—	5.66
Refrig.	—	—	—	—	—	—	—	—	0.63
Total	0.10	0.91	0.01	0.17	0.18	0.01	0.04	0.06	649

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
General Light Industry	0.14	5.10	0.06	1.02	1.08	0.06	0.27	0.33	3,952
Total	0.14	5.10	0.06	1.02	1.08	0.06	0.27	0.33	3,952
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
General Light Industry	0.13	5.38	0.06	1.02	1.08	0.06	0.27	0.33	3,942
Total	0.13	5.38	0.06	1.02	1.08	0.06	0.27	0.33	3,942
Annual	—	—	—	—	—	—	—	—	—
General Light Industry	0.02	0.87	0.01	0.17	0.18	0.01	0.04	0.05	593
Total	0.02	0.87	0.01	0.17	0.18	0.01	0.04	0.05	593

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
General Light Industry	—	—	—	—	—	—	—	—	70.8

Total	—	—	—	—	—	—	—	—	—	70.8
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—
General Light Industry	—	—	—	—	—	—	—	—	—	70.8
Total	—	—	—	—	—	—	—	—	—	70.8
Annual	—	—	—	—	—	—	—	—	—	—
General Light Industry	—	—	—	—	—	—	—	—	—	11.7
Total	—	—	—	—	—	—	—	—	—	11.7

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
General Light Industry	0.01	0.17	0.01	—	0.01	0.01	—	0.01	206
Total	0.01	0.17	0.01	—	0.01	0.01	—	0.01	206
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
General Light Industry	0.01	0.17	0.01	—	0.01	0.01	—	0.01	206
Total	0.01	0.17	0.01	—	0.01	0.01	—	0.01	206
Annual	—	—	—	—	—	—	—	—	—
General Light Industry	< 0.005	0.03	< 0.005	—	< 0.005	< 0.005	—	< 0.005	34.1
Total	< 0.005	0.03	< 0.005	—	< 0.005	< 0.005	—	< 0.005	34.1

4.3. Area Emissions by Source

4.3.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Source	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Consumer Products	0.31	—	—	—	—	—	—	—	—
Architectural Coatings	0.04	—	—	—	—	—	—	—	—
Landscape Equipment	0.10	0.01	< 0.005	—	< 0.005	< 0.005	—	< 0.005	2.63
Total	0.46	0.01	< 0.005	—	< 0.005	< 0.005	—	< 0.005	2.63
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Consumer Products	0.31	—	—	—	—	—	—	—	—
Architectural Coatings	0.04	—	—	—	—	—	—	—	—
Total	0.35	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—
Consumer Products	0.06	—	—	—	—	—	—	—	—
Architectural Coatings	0.01	—	—	—	—	—	—	—	—
Landscape Equipment	0.01	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	0.21
Total	0.07	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	0.21

4.4. Water Emissions by Land Use

4.4.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
General Light Industry	—	—	—	—	—	—	—	—	22.3
Total	—	—	—	—	—	—	—	—	22.3
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
General Light Industry	—	—	—	—	—	—	—	—	22.3
Total	—	—	—	—	—	—	—	—	22.3
Annual	—	—	—	—	—	—	—	—	—
General Light Industry	—	—	—	—	—	—	—	—	3.69
Total	—	—	—	—	—	—	—	—	3.69

4.5. Waste Emissions by Land Use

4.5.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
General Light Industry	—	—	—	—	—	—	—	—	34.2
Total	—	—	—	—	—	—	—	—	34.2
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
General Light Industry	—	—	—	—	—	—	—	—	34.2
Total	—	—	—	—	—	—	—	—	34.2
Annual	—	—	—	—	—	—	—	—	—

General Light Industry	—	—	—	—	—	—	—	—	—	5.66
Total	—	—	—	—	—	—	—	—	—	5.66

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
General Light Industry	—	—	—	—	—	—	—	—	3.81
Total	—	—	—	—	—	—	—	—	3.81
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
General Light Industry	—	—	—	—	—	—	—	—	3.81
Total	—	—	—	—	—	—	—	—	3.81
Annual	—	—	—	—	—	—	—	—	—
General Light Industry	—	—	—	—	—	—	—	—	0.63
Total	—	—	—	—	—	—	—	—	0.63

4.7. Offroad Emissions By Equipment Type

4.7.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipment Type	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—

Total	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipment Type	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipment Type	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—

Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Vegetation	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—

Total	—	—	—	—	—	—	—	—	—	—
-------	---	---	---	---	---	---	---	---	---	---

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Species	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Avoided	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—
Sequestered	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—
Removed	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Avoided	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—
Sequestered	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—
Removed	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—
Avoided	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—
Sequestered	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—
Removed	—	—	—	—	—	—	—	—	—

Subtotal	—	—	—	—	—	—	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—	—	—

5. Activity Data

5.9. Operational Mobile Sources

5.9.1. Unmitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday	Trips/Year	VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
General Light Industry	113	45.3	114	37,781	1,131	454	1,140	377,923

5.10. Operational Area Sources

5.10.1. Hearths

5.10.1.1. Unmitigated

5.10.2. Architectural Coatings

Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
0	0.00	21,939	7,313	—

5.10.3. Landscape Equipment

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	180

5.11. Operational Energy Consumption

5.11.1. Unmitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBtu/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBtu/yr)
General Light Industry	159,572	160	0.0330	0.0040	640,459

5.12. Operational Water and Wastewater Consumption

5.12.1. Unmitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)
General Light Industry	3,382,263	0.00

5.13. Operational Waste Generation

5.13.1. Unmitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)
General Light Industry	18.1	—

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced
General Light Industry	Other commercial A/C and heat pumps	R-410A	2,088	0.30	4.00	4.00	18.0

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
----------------	-----------	-------------	----------------	---------------	------------	-------------

5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

Equipment Type	Fuel Type	Number per Day	Hours per Day	Hours per Year	Horsepower	Load Factor
----------------	-----------	----------------	---------------	----------------	------------	-------------

5.16.2. Process Boilers

Equipment Type	Fuel Type	Number	Boiler Rating (MMBtu/hr)	Daily Heat Input (MMBtu/day)	Annual Heat Input (MMBtu/yr)
----------------	-----------	--------	--------------------------	------------------------------	------------------------------

5.17. User Defined

Equipment Type	Fuel Type
----------------	-----------

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

Vegetation Land Use Type	Vegetation Soil Type	Initial Acres	Final Acres
--------------------------	----------------------	---------------	-------------

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

Biomass Cover Type	Initial Acres	Final Acres
--------------------	---------------	-------------

5.18.2. Sequestration

5.18.2.1. Unmitigated

Tree Type	Number	Electricity Saved (kWh/year)	Natural Gas Saved (btu/year)
-----------	--------	------------------------------	------------------------------

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

Climate Hazard	Result for Project Location	Unit
Temperature and Extreme Heat	14.0	annual days of extreme heat
Extreme Precipitation	3.50	annual days with precipitation above 20 mm
Sea Level Rise	—	meters of inundation depth
Wildfire	0.00	annual hectares burned

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about $\frac{3}{4}$ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (Radke et al., 2017, CEC-500-2017-008), and consider inundation location and depth for the San Francisco Bay, the Sacramento-San Joaquin River Delta and California coast resulting different increments of sea level rise coupled with extreme storm events. Users may select from four scenarios to view the range in potential inundation depth for the grid cell. The four scenarios are: No rise, 0.5 meter, 1.0 meter, 1.41 meters

Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

6.2. Initial Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	N/A	N/A	N/A	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	N/A	N/A	N/A
Wildfire	N/A	N/A	N/A	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	0	0	0	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

6.3. Adjusted Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	N/A	N/A	N/A	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	N/A	N/A	N/A
Wildfire	N/A	N/A	N/A	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	1	1	1	2

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Exposure Indicators	—
AQ-Ozone	13.6

AQ-PM	30.2
AQ-DPM	88.8
Drinking Water	6.74
Lead Risk Housing	48.0
Pesticides	0.00
Toxic Releases	57.0
Traffic	81.8
Effect Indicators	—
CleanUp Sites	27.5
Groundwater	39.6
Haz Waste Facilities/Generators	89.5
Impaired Water Bodies	12.5
Solid Waste	0.00
Sensitive Population	—
Asthma	91.0
Cardio-vascular	80.7
Low Birth Weights	95.2
Socioeconomic Factor Indicators	—
Education	44.0
Housing	4.25
Linguistic	36.5
Poverty	33.5
Unemployment	25.2

7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Economic	—

Above Poverty	74.99037598
Employed	71.06377518
Median HI	69.43410753
Education	—
Bachelor's or higher	37.61067625
High school enrollment	100
Preschool enrollment	26.03618632
Transportation	—
Auto Access	59.70742974
Active commuting	28.02515078
Social	—
2-parent households	58.89901193
Voting	40.63903503
Neighborhood	—
Alcohol availability	74.79789555
Park access	54.17682536
Retail density	78.08289491
Supermarket access	28.01231875
Tree canopy	22.32773001
Housing	—
Homeownership	92.2751187
Housing habitability	69.04914667
Low-inc homeowner severe housing cost burden	71.96201719
Low-inc renter severe housing cost burden	28.7052483
Uncrowded housing	33.53009111
Health Outcomes	—
Insured adults	69.70358014
Arthritis	29.1

Asthma ER Admissions	5.7
High Blood Pressure	65.9
Cancer (excluding skin)	29.3
Asthma	72.9
Coronary Heart Disease	37.1
Chronic Obstructive Pulmonary Disease	53.7
Diagnosed Diabetes	38.1
Life Expectancy at Birth	38.1
Cognitively Disabled	56.3
Physically Disabled	29.8
Heart Attack ER Admissions	6.1
Mental Health Not Good	67.2
Chronic Kidney Disease	35.4
Obesity	77.3
Pedestrian Injuries	75.3
Physical Health Not Good	55.3
Stroke	39.4
Health Risk Behaviors	—
Binge Drinking	77.5
Current Smoker	67.4
No Leisure Time for Physical Activity	47.6
Climate Change Exposures	—
Wildfire Risk	0.0
SLR Inundation Area	16.1
Children	77.6
Elderly	48.0
English Speaking	51.0
Foreign-born	83.2

Outdoor Workers	57.4
Climate Change Adaptive Capacity	—
Impervious Surface Cover	14.6
Traffic Density	87.4
Traffic Access	65.1
Other Indices	—
Hardship	43.2
Other Decision Support	—
2016 Voting	32.4

7.3. Overall Health & Equity Scores

Metric	Result for Project Census Tract
CalEnviroScreen 4.0 Score for Project Location (a)	56.0
Healthy Places Index Score for Project Location (b)	63.0
Project Located in a Designated Disadvantaged Community (Senate Bill 535)	No
Project Located in a Low-Income Community (Assembly Bill 1550)	No
Project Located in a Community Air Protection Program Community (Assembly Bill 617)	No

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

7.4. Health & Equity Measures

No Health & Equity Measures selected.

7.5. Evaluation Scorecard

Health & Equity Evaluation Scorecard not completed.

7.6. Health & Equity Custom Measures

No Health & Equity Custom Measures created.

8. User Changes to Default Data

Screen	Justification
Characteristics: Utility Information	PG&E used since no input for AVA Electricity provider. PG&E rate = 160 lb/MWh.
Operations: Water and Waste Water	Wastewater treatment 100% aerobic - no septic tanks or lagoons.
Operations: Vehicle Data	Provided trip gen.
Operations: Fleet Mix	Fleet mix - auto trips and truck trips.